The COVID-19 pandemic has laid bare the importance of non-pharmaceutical interventions in the containment of airborne infectious diseases. Social distancing and mask-wearing have been found to contain COVID-19 spreading across a number of observational studies, but a precise understanding of their combined effectiveness is lacking. An underdeveloped area of research entails the quantification of the specific role of each of these measures when they are differentially adopted by the population. Pursuing this research allows for answering several pressing questions like: how many people should follow public health measures for them to be effective for everybody? Is it sufficient to practice social distancing only or just wear a mask? Here, we make a first step in this direction, by establishing a susceptible–exposed–infected–removed epidemic model on a temporal network, evolving according to the activity-driven paradigm. Through analytical and numerical efforts, we study epidemic spreading as a function of the proportion of the population following public health measures, the extent of social distancing, and the efficacy of masks in protecting the wearer and others. Our model demonstrates that social distancing and mask-wearing can be effective in preventing COVID-19 outbreaks if adherence to both measures involves a substantial fraction of the population.

1.
J. B.
Nuzzo
,
L.
Mullen
,
M.
Snyder
,
A.
Cicero
, and
T. V.
Inglesby
,
Preparedness for a High Impact Respiratory Pathogen Pandemic
(
The Johns Hopkins Center for Health Security
,
2019
), p.
84
.
2.
Centers for Disease Control and Prevention
, “1918 pandemic (H1N1 virus),” see https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html (last accessed March 11, 2020).
3.
R. D.
Smith
, “
Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management
,”
Soc. Sci. Med.
63
,
3113
3123
(
2006
).
4.
R. J.
de Groot
,
S. C.
Baker
,
R. S.
Baric
,
C. S.
Brown
, and
C.
Drosten
, Enjuanes
, “
Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group
,”
J. Virol.
87
,
7790
7792
(
2013
).
5.
Centers for Disease Control and Prevention
, “Summary of probable SARS cases with onset of illness,” see https://www.who.int/health-topics/severe-acute-respiratory-syndrome (last accessed March 11, 2020).
6.
World Health Organization
, “Eastern Mediterranean Region,” see http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html (last accessed March 11, 2020).
7.
World Health Organization
, “WHO coronavirus disease (COVID-19) dashboard,” see https://COVID19.who.int (last accessed March 11, 2020).
8.
R.
Zhang
,
Y.
Li
,
A. L.
Zhang
,
Y.
Wang
, and
M. J.
Molina
, “
Identifying airborne transmission as the dominant route for the spread of COVID-19
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
14857
14863
(
2020
).
9.
E. L.
Anderson
,
P.
Turnham
,
J. R.
Griffin
, and
C. C.
Clarke
, “
Consideration of the aerosol transmission for COVID-19 and public health
,”
Risk Anal.
40
,
902
907
(
2020
).
10.
J.
Wang
and
G.
Du
, “
COVID-19 may transmit through aerosol
,”
Ir. J. Med. Sci.
189
,
1143
(
2020
).
11.
D. K.
Chu
,
E. A.
Akl
,
S.
Duda
,
K.
Solo
,
S.
Yaacoub
,
H. J.
Schünemann
,
D. K.
Chu
, and
E. A.
Akl
, “
Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis
,”
Lancet
395
,
1973
1987
(
2020
).
12.
E.
Caroppo
,
P.
De Lellis
,
I.
Lega
,
A.
Candelori
,
D.
Pedacchia
,
A.
Pellegrini
,
R.
Sonnino
,
V.
Venturiello
,
M.
Ruiz Marìn
, and
M.
Porfiri
, “
Unequal effects of the national lockdown on mental and social health in Italy
,”
Ann. Istituto Super. Sanità
56
,
497
501
(
2020
).
13.
S. K.
Brooks
,
R. K.
Webster
,
L. E.
Smith
,
L.
Woodland
,
S.
Wessely
,
N.
Greenberg
, and
G. J.
Rubin
, “
The psychological impact of quarantine and how to reduce it: Rapid review of the evidence
,”
Lancet
395
,
912
920
(
2020
).
14.
I. F.
Tso
and
S.
Park
, “
Alarming levels of psychiatric symptoms and the role of loneliness during the COVID-19 epidemic: A case study of Hong Kong
,”
Psychiatry Res.
293
,
113423
(
2020
).
15.
L.
Matrajt
and
T.
Leung
, “
Evaluating the effectiveness of social distancing interventions to delay or flatten the epidemic curve of coronavirus disease
,”
Emerging Infect. Dis.
26
,
1740
1748
(
2020
).
16.
A. D.
Wiese
,
J.
Everson
, and
C. G.
Grijalva
, “
Social distancing measures: Evidence of interruption of seasonal influenza activity and early lessons of the SARS-CoV-2 pandemic
,”
Clin. Infect. Diseases
2020
,
ciaa834
.
17.
S. J.
Olsen
,
E.
Azziz-Baumgartner
,
A. P.
Budd
,
L.
Brammer
,
S.
Sullivan
,
R. F.
Pineda
,
C.
Cohen
, and
A. M.
Fry
, “
Decreased influenza activity during the COVID-19 pandemic—United States, Australia, Chile, and South Africa, 2020
,”
Morbidity Mortality Weekly Rep.
69
,
1305
1309
(
2020
).
18.
E.
Estrada
, “
COVID-19 and SARS-CoV-2. Modeling the present, looking at the future
,”
Phys. Rep.
869
,
1
51
(
2020
).
19.
F.
Parino
,
L.
Zino
,
M.
Porfiri
, and
A.
Rizzo
, “Modelling and predicting the effect of social distancing and travel restrictions on COVID-19 spreading,”
J. R. Soc. Interface
18
, 20200875 (
2021
).
20.
M.
Mancastroppa
,
R.
Burioni
,
V.
Colizza
, and
A.
Vezzani
, “
Active and inactive quarantine in epidemic spreading on adaptive activity-driven networks
,”
Phys. Rev. E
102
,
020301(R)
(
2020
).
21.
C. N.
Ngonghala
,
E.
Iboi
,
S.
Eikenberry
,
M.
Scotch
,
C. R.
MacIntyre
,
M. H.
Bonds
, and
A. B.
Gumel
, “
Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus
,”
Math. Biosci.
325
,
108364
(
2020
).
22.
A.
Aleta
,
D.
Martín-Corral
,
A.
Pastore y Piontti
,
M.
Ajelli
,
M.
Litvinova
,
M.
Chinazzi
,
N. E.
Dean
,
M. E.
Halloran
,
I. M.
Longini
,
S.
Merler
,
A.
Pentland
,
A.
Vespignani
,
E.
Moro
, and
Y.
Moreno
, “
Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19
,”
Nature Human Behav.
4
,
964
(
2020
).
23.
P. C.
Silva
,
P. V.
Batista
,
H. S.
Lima
,
M. A.
Alves
,
F. G.
Guimarães
, and
R. C.
Silva
, “
COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions
,”
Chaos, Solitons Fractals
139
,
110088
(
2020
).
24.
Centers for Disease Control and Prevention
, “CDC calls on Americans to wear masks to prevent COVID-19 spread,” see https://www.cdc.gov/media/releases/2020/p0714-americans-to-wear-masks.html (last accessed March 11, 2020).
25.
N. H.
Leung
,
D. K.
Chu
,
E. Y.
Shiu
,
K. H.
Chan
, and
J. J. M.
Hau
, “
Respiratory virus shedding in exhaled breath and efficacy of face masks
,”
Nat. Med.
26
,
676
680
(
2020
).
26.
A.
Konda
,
A.
Prakash
,
G. A.
Moss
,
M.
Schmoldt
,
G. D.
Grant
, and
S.
Guha
, “
Aerosol filtration efficiency of common fabrics used in respiratory cloth masks
,”
ACS Nano
14
,
6339
6347
(
2020
).
27.
M.
Gandhi
,
C.
Beyrer
, and
E.
Goosby
, “
Masks do more than protect others during COVID-19: Reducing the inoculum of SARS-CoV-2 to protect the wearer
,”
J. Gen. Intern. Med.
35
,
3063
(
2020
).
28.
W.
Lyu
and
G. L.
Wehby
, “
Community use of face masks and COVID-19: Evidence from a natural experiment of state mandates in the US
,”
Health Aff.
39
,
1419
1425
(
2020
).
29.
R. O. J.
H. Stutt
,
R.
Retkute
,
M.
Bradley
,
C. A.
Gilligan
, and
J.
Colvin
, “
A modelling framework to assess the likely effectiveness of facemasks in combination with ‘lock-down’ in managing the COVID-19 pandemic
,”
Proc. R. Soc. Lond. A. Math. Phys. Sci.
476
,
20200376
(
2020
).
30.
D.
Kai
,
G.-P.
Goldstein
,
A.
Morgunov
,
V.
Nangalia
, and
A.
Rotkirch
, “Universal masking is urgent in the COVID-19 pandemic: SEIR and agent based models, empirical validation, policy recommendations,” arXiv:2004.13553 (2020).
31.
D. N.
Fisman
,
A. L.
Greer
, and
A. R.
Tuite
, “
Bidirectional impact of imperfect mask use on reproduction number of COVID-19: A next generation matrix approach
,”
Infect. Disease Model.
5
,
405
408
(
2020
).
32.
Y.
Tian
,
A.
Sridhar
,
O.
Yagan
, and
H. V.
Poor
, “Analysis of the impact of mask-wearing in viral spread: Implications for COVID-19,” arXiv:2011.04208 (2020).
33.
N.
Perra
,
B.
Gonçalves
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Activity driven modeling of time varying networks
,”
Sci. Rep.
2
,
2045
2322
(
2012
).
34.
S.
Liu
,
N.
Perra
,
M.
Karsai
, and
A.
Vespignani
, “
Controlling contagion processes in activity driven networks
,”
Phys. Rev. Lett.
112
,
118702
(
2014
).
35.
A.
Rizzo
,
M.
Frasca
, and
M.
Porfiri
, “
Effect of individual behavior on epidemic spreading in activity-driven networks
,”
Phys. Rev. E
90
,
042801
(
2014
).
36.
A.
Rizzo
,
B.
Pedalino
, and
M.
Porfiri
, “
A network model for Ebola spreading
,”
J. Theor. Biol.
394
,
212
222
(
2016
).
37.
A.
Rizzo
and
M.
Porfiri
, “
Innovation diffusion on time-varying activity driven networks
,”
Eur. Phys. J. B
89
,
1
8
(
2016
).
38.
L.
Zino
,
A.
Rizzo
, and
M.
Porfiri
, “
Consensus over activity-driven networks
,”
IEEE Trans. Control Netw. Syst.
7
,
866
877
(
2020
).
39.
I.
Pozzana
,
K.
Sun
, and
N.
Perra
, “
Epidemic spreading on activity-driven networks with attractiveness
,”
Phys. Rev. E
96
,
042310
(
2017
).
40.
A. L.
Barabási
, “
The origin of bursts and heavy tails in human dynamics
,”
Nature
435
,
1476
4687
(
2005
).
41.
H.-H.
Jo
,
M.
Karsai
,
J.
Kertész
, and
K.
Kaski
, “
Circadian pattern and burstiness in mobile phone communication
,”
New J. Phys.
14
,
013055
(
2012
).
42.
Institute for Health Metrics and Evaluation (IHME)
, “COVID-19 projections,” see https://COVID19.healthdata.org/projections (last accessed March 11, 2020).
43.
L.
Peeples
, “
Face masks: What the data say
,”
Nature
586
,
186
(
2020
).
44.
J.
Howard
,
A.
Huang
,
Z.
Li
, and
A.
Rimoin
, “Face masks against COVID-19: An evidence review,”
Proc. Natl. Acad. Sci. U.S.A.
118
(4), e2014564118 (
2021
).
45.
J.
Yan
,
S.
Guha
,
P.
Hariharan
, and
M.
Myers
, “
Modeling the effectiveness of respiratory protective devices in reducing influenza outbreak
,”
Risk Anal.
39
,
647
661
(
2019
).
46.
M. J.
Hendrix
,
C.
Walde
,
K.
Findley
, and
R.
Trotman
, “
Absence of apparent transmission of SARS-CoV-2 from two stylists after exposure at a hair salon with a universal face covering policy in Springfield, Missouri, May 2020
,”
Morbidity Mortality Weekly Rep.
69
,
930
(
2020
).
47.
The reproduction number is the number of secondary cases in an entirely susceptible population from a single infected node.
48.
B.
Rahman
,
E.
Sadraddin
, and
A.
Porreca
, “
The basic reproduction number of SARS-CoV-2 in Wuhan is about to die out, how about the rest of the world?
Rev. Med. Virol.
30
,
e2111
(
2020
).
49.
The New York Times
, “COVID-19 data,” see https://github.com/nytimes/COVID-19-data (last accessed March 11, 2020).
50.
L.
Zino
,
A.
Rizzo
, and
M.
Porfiri
, “
Modeling memory effects in activity-driven networks
,”
SIAM J. Appl. Dyn. Syst.
17
,
2830
2854
(
2018
).
51.
A.
Truszkowska
,
B.
Behring
,
J.
Hasanyan
,
L.
Zino
,
S.
Butail
,
E.
Caroppo
,
Z.-P.
Jiang
,
A.
Rizzo
, and
M.
Porfiri
, “
High-resolution agent-based modeling of COVID-19 spreading in a small town
,”
Adv. Theory Simulat.
4
(3),
2000277
(
2021
).
52.
J. A.
Weill
,
M.
Stigler
,
O.
Deschenes
, and
M. R.
Springborn
, “
Social distancing responses to COVID-19 emergency declarations strongly differentiated by income
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
19658
19660
(
2020
).
You do not currently have access to this content.