We revisited the global traffic light optimization problem through a cellular automata model, which allows us to address the relationship between the traffic lights and car routing. We conclude that both aspects are not separable. Our results show that a good routing strategy weakens the importance of the traffic light period for mid-densities, thus limiting the parameter space where such optimization is relevant. This is confirmed by analyzing the travel time normalized by the shortest path between the origin and destination. As an unforeseen result, we report what seems to be a power-law distribution for such quantities, indicating that the travel time distribution slowly decreases for long travel times. The power-law exponent depends on the density, traffic light period, and routing strategy, which in this case is parametrized by the tendency of agents to abandon a route if it becomes stagnant. These results could have relevant consequences on how to improve the overall traffic efficiency in a particular city, thus providing insight into useful measurements, which are often counter-intuitive, which may be valuable to traffic controllers that operate through traffic light periods and phases.

1.
D.
Helbing
and
M.
Treiber
, “
Jams, waves, and clusters
,”
Science
282
,
2001
2003
(
1998
).
2.
D.
Braess
, “
Über ein paradoxon aus der verkehrsplanung
,”
Unternehmensforschung
12
,
258
268
(
1968
).
3.
E.
Brockfeld
,
R.
Barlovic
,
A.
Schadschneider
, and
M.
Schreckenberg
, “
Optimizing traffic lights in a cellular automaton model for city traffic
,”
Phys. Rev. E
64
,
056132
(
2001
).
4.
M.
Sasaki
and
T.
Nagatani
, “
Transition and saturation of traffic flow controlled by traffic lights
,”
Physica A
325
,
531
546
(
2003
).
5.
J.
García-Nieto
,
E.
Alba
, and
A. C.
Olivera
, “
Swarm intelligence for traffic light scheduling: Application to real urban areas
,”
Eng. Appl. Artif. Intell.
25
,
274
283
(
2012
).
6.
S. S.
Mousavi
,
M.
Schukat
, and
E.
Howley
, “
Traffic light control using deep policy-gradient and value-function-based reinforcement learning
,”
IET Intell. Transport Syst.
11
,
417
423
(
2017
).
7.
K.
Nagel
and
M.
Paczuski
, “
Emergent traffic jams
,”
Phys. Rev. E
51
,
2909
(
1995
).
8.
B.
Toledo
,
M.
Sanjuan
,
V.
Muñoz
,
J.
Rogan
, and
J.
Valdivia
, “
Non-smooth transitions in a simple city traffic model analyzed through supertracks
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
81
88
(
2013
).
9.
T.
Nagatani
, “
Jamming transition in the traffic-flow model with two-level crossings
,”
Phys. Rev. E
48
,
3290
(
1993
).
10.
T.
Nagatani
, “
Thermodynamic theory for the jamming transition in traffic flow
,”
Phys. Rev. E
58
,
4271
(
1998
).
11.
T.
Barois
,
J.-F.
Boudet
,
N.
Lanchon
,
J. S.
Lintuvuori
, and
H.
Kellay
, “
Characterization and control of a bottleneck-induced traffic-jam transition for self-propelled particles in a track
,”
Phys. Rev. E
99
,
052605
(
2019
).
12.
B.
Toledo
,
V.
Muñoz
,
J.
Rogan
,
C.
Tenreiro
, and
J. A.
Valdivia
, “
Modeling traffic through a sequence of traffic lights
,”
Phys. Rev. E
70
,
016107
(
2004
).
13.
R. O.
Medina
,
J.
Rogan
,
M.
Ramirez
,
B. A.
Toledo
, and
J. A.
Valdivia
, “
Modeling interacting city traffic with finite acceleration and braking capacities
,”
Chaos
29
,
093136
(
2019
).
14.
B. A.
Toledo
,
E.
Cerda
,
J.
Rogan
,
V.
Muñoz
,
C.
Tenreiro
,
R.
Zarama
, and
J. A.
Valdivia
, “
Universal and nonuniversal features in a model of city traffic
,”
Phys. Rev. E
75
,
026108
(
2007
).
15.
T.
Nagatani
, “
Chaos and dynamical transition of a single vehicle induced by traffic light and speedup
,”
Physica A
348
,
561
571
(
2005
).
16.
S.
Carrasco
,
P.
Medina
,
J.
Rogan
, and
J.
Valdivia
, “
Does following optimized routes for single cars improve car routing?
,”
Chaos
30
,
063148
(
2020
).
17.
H.
Youn
,
M. T.
Gastner
, and
H.
Jeong
, “
Price of anarchy in transportation networks: Efficiency and optimality control
,”
Phys. Rev. Lett.
101
,
128701
(
2008
).
18.
A.
Rose
,
R.
O’Dea
, and
K. I.
Hopcraft
, “
Price of anarchy on heterogeneous traffic-flow networks
,”
Phys. Rev. E
94
,
032315
(
2016
).
19.
H.
Lee
,
H.-W.
Lee
, and
D.
Kim
, “
Macroscopic traffic models from microscopic car-following models
,”
Phys. Rev. E
64
,
056126
(
2001
).
20.
J.
Matsukidaira
and
K.
Nishinari
, “
Euler-lagrange correspondence of cellular automaton for traffic-flow models
,”
Phys. Rev. Lett.
90
,
088701
(
2003
).
21.
K.
Nishinari
,
M.
Treiber
, and
D.
Helbing
, “
Interpreting the wide scattering of synchronized traffic data by time gap statistics
,”
Phys. Rev. E
68
,
067101
(
2003
).
22.
A.
Spiliopoulou
,
M.
Kontorinaki
,
M.
Papageorgiou
, and
P.
Kopelias
, “
Macroscopic traffic flow model validation at congested freeway off-ramp areas
,”
Transp. Res. Part C Emerging Technol.
41
,
18
29
(
2014
).
23.
D.
Chowdhury
and
A.
Schadschneider
, “
Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods
,”
Phys. Rev. E
59
,
R1311
(
1999
).
24.
A.
Schadschneider
,
D.
Chowdhury
,
E.
Brockfeld
,
K.
Klauck
,
L.
Santen
, and
J.
Zittartz
, “A new cellular automaton model for city traffic,” in Traffic and Granular Flow 99 (Springer, 2000), pp. 437–442.
25.
O.
Biham
,
A. A.
Middleton
, and
D.
Levine
, “
Self-organization and a dynamical transition in traffic-flow models
,”
Phys. Rev. A
46
,
R6124
(
1992
).
26.
K.
Nagel
and
M.
Schreckenberg
, “
A cellular automaton model for freeway traffic
,”
J. Phys. I France
2
,
2221
2229
(
1992
).
27.
B.
Toledo
,
E.
Cerda
,
J.
Rogan
,
V.
Munoz
,
C.
Tenreiro
,
R.
Zarama
, and
J.
Valdivia
, “
Universal and nonuniversal features in a model of city traffic
,”
Phys. Rev. E
75
,
026108
(
2007
).
28.
H.
Bauke
, “
Parameter estimation for power-law distributions by maximum likelihood methods
,”
Eur. Phys. J. B.
58
,
167
173
(
2007
).
29.
R.
Mohammadi
, “Journey time variability in the london area. 1. Journey time distribution,” in Traffic Engineering and Control (Hemming Group Ltd, 1997), Vol. 38.
30.
J. G.
Strathman
and
J. R.
Hopper
, “
Empirical analysis of bus transit on-time performance
,”
Transp. Res. Part A Policy Pract.
27
,
93
100
(
1993
).
31.
M. A.
Turnquist
, “
A model for investigating the effects of service frequency and reliability on bus passenger waiting times
,”
Transp. Res. Rec.
663
,
70
73
(
1978
).
32.
A.
May
,
P. W.
Bonsall
, and
N.
Marler
, “Travel time variability of a group of car commuters in North London,” Institute of Transport Studies, University of Leeds, Working Paper 277, 1989.
33.
W. K.
Talley
and
A. J.
Becker
, “
On-time performance and the exponential probability distribution
,”
Transp. Res. Rec.
1108
,
22
26
(
1987
).
34.
R. P.
Guenthner
and
K.
Hamat
, “Distribution of bus transit on-time performance,” Transportation Research Record 1202 (1988).
35.
Y.
Hollander
and
R.
Liu
, “
Estimation of the distribution of travel times by repeated simulation
,”
Transp. Res. Part C Emerging Technol.
16
,
212
231
(
2008
).
36.
M.
Fosgerau
and
D.
Fukuda
, “
Valuing travel time variability: Characteristics of the travel time distribution on an urban road
,”
Transp. Res. Part C Emerging Technol.
24
,
83
101
(
2012
).
You do not currently have access to this content.