Recently, it has been successfully shown that the temporal evolution of the fraction of COVID-19 infected people possesses the same dynamics as the ones demonstrated by a self-organizing diffusion model over a lattice, in the frame of universality. In this brief, the relevant emerging dynamics are further investigated. Evidence that this nonlinear model demonstrates critical dynamics is scrutinized within the frame of the physics of critical phenomena. Additionally, the concept of criticality over the infected population fraction in epidemics (or a pandemic) is introduced and its importance is discussed, highlighting the emergence of the critical slowdown phenomenon. A simple method is proposed for estimating how far away a population is from this “singular” state, by utilizing the theory of critical phenomena. Finally, a dynamic approach applying the self-organized diffusion model is proposed, resulting in more accurate simulations, which can verify the effectiveness of restrictive measures. All the above are supported by real epidemic data case studies.

1.
Y.
Contoyiannis
,
S. G.
Stavrinides
,
M. P.
Hanias
,
M.
Kampitakis
,
P.
Papadopoulos
,
R.
Picos
, and
S. M.
Potirakis
, “
A universal physics-based model describing COVID-19 dynamics in Europe
,”
Int. J. Environ. Res. Public Health
17
,
6525
(
2020
).
2.
H.
Schuster
and
W.
Just
,
Deterministic Chaos: An Introduction
(
Wiley-VCH
,
2005
).
3.
K.
Huang
,
Statistical Mechanics
,
2nd ed.
(
Wiley
,
1987
).
4.
S.
Ion
and
G.
Marinoschi
, “
A self-organizing criticality mathematical model for contamination and epidemic spreading
,”
Discrete Contin. Dyn. Syst. B
22
,
383
(
2017
).
5.
N.
Stollenwerk
, “
Self-organized criticality in human epidemiology
,”
AIP Conf. Proc.
779
,
191
194
(
2005
).
6.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality: An explanation of the 1/f noise
,”
Phys. Rev. Lett.
59
,
381
(
1987
).
7.
J. C.
Miller
, “
Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes
,”
Infect. Dis. Model.
2
,
35
55
(
2017
).
8.
S.
Gao
,
Z.
Teng
,
J. J.
Nieto
, and
A.
Torres
, “
Analysis of an SIR epidemic model with pulse vaccination and distributed time delay
,”
J. Biomed. Biotechnol.
2007
,
64870
(
2007
).
9.
T.
Lux
, “
The social dynamics of COVID-19
,”
Phys. A
567
,
125710
(
2021
).
10.
Y.
Huang
,
Y.
Wu
, and
W.
Zhang
, “
Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19
,”
Chaos, Solitons Fractals
139
,
110041
(
2020
).
11.
Y.
Contoyiannis
,
S.
Potirakis
, and
F.
Diakonos
, “
Stickiness in the order parameter time-series as a signature of criticality
,”
Phys. A
544
,
123508
(
2020
).
12.
I. A.
van de Leemput
,
M.
Wichers
,
A. O.
Cramer
,
D.
Borsboom
,
F.
Tuerlinckx
,
P.
Kuppens
,
E. H.
van Nes
,
W.
Viechtbauer
,
E. J.
Giltay
,
S. H.
Aggen
et al., “
Critical slowing down as early warning for the onset and termination of depression
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
87
92
(
2014
).
13.
T.
Brett
,
M.
Ajelli
,
Q.-H.
Liu
,
M. G.
Krauland
,
J. J.
Grefenstette
,
W. G.
van Panhuis
,
A.
Vespignani
,
J. M.
Drake
, and
P.
Rohani
, “
Detecting critical slowing down in high-dimensional epidemiological systems
,”
PLoS Comput. Biol.
16
,
e1007679
(
2020
).
14.
Y.
Contoyiannis
and
M.
Kampitakis
, “The degeneration of critical point in Z(3) spin system. A proposal for QCD confinement-deconfinement phase transition in the color space,” arXiv:1904.09176 (2019).
15.
Y.
Contoyiannis
and
S. M.
Potirakis
, “
Signatures of the symmetry breaking phenomenon in pre-seismic electromagnetic emissions
,”
J. Stat. Mech.: Theory Exp.
2018
,
083208
(
2018
).
16.
Y.
Contoyiannis
and
F.
Diakonos
, “
Abrupt transition in a sandpile model
,”
Phys. Rev. E
73
,
031303
(
2006
).
17.
Y.
Contoyiannis
,
F.
Diakonos
, and
A.
Malakis
, “
Intermittent dynamics of critical fluctuations
,”
Phys. Rev. Lett.
89
,
035701
(
2002
).
18.
Y. F.
Contoyiannis
,
F.
Diakonos
,
C.
Papaefthimiou
, and
G.
Theophilidis
, “
Criticality in the relaxation phase of a spontaneously contracting atria isolated from a frog’s heart
,”
Phys. Rev. Lett.
93
,
098101
(
2004
).
19.
S. M.
Potirakis
,
Y.
Contoyiannis
,
F. K.
Diakonos
, and
M. P.
Hanias
, “
Intermittency-induced criticality in a resistor-inductor-diode circuit
,”
Phys. Rev. E
95
,
042206
(
2017
).
20.
Y.
Contoyiannis
and
F.
Diakonos
, “
Unimodal maps and order parameter fluctuations in the critical region
,”
Phys. Rev. E
76
,
031138
(
2007
).
21.
See https://ourworldindata.org/coronavirus-data-explorer for “Our World in Data” (last accessed December 20, 2020).
22.
See https://eody.gov.gr/epidimiologika-statistika-dedomena/ektheseis-covid-19 for “Hellenic National Public Health Organization” (last accessed December 20, 2020).
You do not currently have access to this content.