In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable periodic motions to chaos on the period-doubling cascaded bifurcation trees are determined through a discrete mapping method. The corresponding homoclinic orbits induced by the unstable periodic orbits are predicted analytically. A period-doubling bifurcation tree of period-1, period-2, and period-4 motions are generated as an example. The homoclinic orbits relative to unstable period-1, period-2, and period-4 motions are determined. Illustrations of homoclinic orbits and periodic orbits are given. This study presents how to determine infinite homoclinic orbits through unstable periodic orbits in three-dimensional or higher-dimensional nonlinear systems.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
2.
L. P.
Shilnikov
, “
On a Poincaré–Birkhoff problem
,”
Mat. Sb.
116
(
3
),
378
397
(
1967
).
3.
N. K.
Gavrilov
and
L. P.
Shilnikov
, “
On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I
,”
Math. Sb.
88
,
475
492
(
1972
).
4.
N. K.
Gavrilov
and
L. P.
Shilnikov
, “
On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II
,”
Math. Sb.
90
,
139
156
(
1973
).
5.
V. S.
Afraimovich
,
V. V.
Bykov
, and
L. P.
Shilnikov
, “
Origin and structure of the Lorenz attractor
,”
Dokl. Akad. Nauk SSSR
234
,
336
339
(
1977
).
6.
T.
Shimizu
and
N.
Morioka
, “
Chaos and limit cycles in the Lorenz model
,”
Phys. Lett. A
66
(
3
),
182
184
(
1978
).
7.
J.
Guckenheimer
and
R. F.
Williams
, “
Structural stability of Lorenz attractors
,”
Publ. Math. l'Inst. Hautes Étud. Sci.
50
(
1
),
59
72
(
1979
).
8.
R. F.
Williams
, “
The structure of Lorenz attractors
,”
Publ. Math.
50
,
73
99
(
1979
).
9.
K. A.
Robbins
, “
Periodic solutions and bifurcation structure at high R in the Lorenz model
,”
SIAM J. Appl. Math.
36
(
3
),
457
472
(
1979
).
10.
J. L.
Kaplan
and
J. A.
Yorke
, “
Preturbulence: A regime observed in a fluid flow model of Lorenz
,”
Commun. Math. Phys.
67
(
2
),
93
108
(
1979
).
11.
J. A.
Yorke
and
E. D.
Yorke
, “
Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model
,”
J. Stat. Phys.
21
(
3
),
263
277
(
1979
).
12.
C.
Sparrow
, “
An introduction to the Lorenz equations
,”
IEEE Trans. Circuits Syst.
30
(
8
),
533
542
(
1983
).
13.
E. A.
Jackson
, “
The Lorenz system: I. The global structure of its stable manifolds
,”
Phys. Scr.
32
(
5
),
469
475
(
1985
).
14.
E. A.
Jackson
, “
The Lorenz system: II. The homoclinic convolution of the stable manifolds
,”
Phys. Scr.
32
(
5
),
476
481
(
1985
).
15.
S. P.
Hastings
and
W. C.
Troy
, “
A proof that the Lorenz equations have a homoclinic orbit
,”
J. Differ. Equations
113
(
1
),
166
188
(
1994
).
16.
A. F.
Vakakis
and
M. F. A.
Azeez
, “
Analytic approximation of the homoclinic orbits of the Lorenz system at σ = 10, b = 8/3 and ρ = 13.926
,”
Nonlinear Dyn.
15
(
3
),
245
257
(
1998
).
17.
W.
Tucker
, “
The Lorenz attractor exists
,”
C. R. l'Acad. Sci. Ser. I Math.
328
(
12
),
1197
1202
(
1999
).
18.
D.
Viswanath
, “
Symbolic dynamics and periodic orbits of the Lorenz attractor
,”
Nonlinearity
16
(
3
),
1035
1056
(
2003
).
19.
P.
Saha
,
D. C.
Saha
,
A.
Ray
, and
A. R.
Chowdhury
, “
On some properties of memristive Lorenz equation—Theory and experiment
,”
J. Appl. Nonlinear Dyn.
7
(
4
),
413
423
(
2018
).
20.
G. A.
Leonov
, “
Exact Lyapunov dimension of attractors and convergence for the Lorenz system
,”
J. Appl. Nonlinear Dyn.
7
(
3
),
319
327
(
2018
).
21.
X.
Liu
and
L.
Hong
, “
The adaptive synchronization of the stochastic fractional-order complex Lorenz system
,”
J. Appl. Nonlinear Dyn.
4
(
3
),
267
279
(
2015
).
22.
S. S.
Hassan
, “
Computational complex dynamics of the discrete Lorenz system
,”
J. Appl. Nonlinear Dyn.
8
(
3
),
345
366
(
2016
).
23.
B.
Al-Hdaibat
, “
Homoclinic solutions in Bazykin’s predator-prey model
,”
Discontinuity Nonlinearity Complexity
9
(
3
),
339
350
(
2020
).
24.
A. C. J.
Luo
,
Discretization and Implicit Mapping Dynamics
(
Springer
,
Berlin
,
2015
).
25.
A. C. J.
Luo
, “
Periodic flows to chaos based on discrete implicit mappings of continuous nonlinear systems
,”
Int. J. Bifurcation Chaos
25
(
3
),
1550044
(
2015
).
26.
A. C. J.
Luo
and
Y.
Guo
, “
A semi-analytical prediction of periodic motions in Duffing oscillator through mapping structures
,”
Discontinuity Nonlinearity Complexity
4
(
2
),
13
44
(
2015
).
27.
A. C. J.
Luo
and
J. Z.
Huang
, “
Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator
,”
Nonlinear Dyn.
72
(
1–2
),
417
438
(
2013
).
28.
A. C. J.
Luo
and
S.
Xing
, “
Multiple bifurcation trees of period-1 motions to chaos in a periodically forced, time-delayed, hardening Duffing oscillator
,”
Chaos Solitons Fractals
89
,
405
434
(
2016
).
29.
Y.
Guo
and
A. C. J.
Luo
, “
Complete bifurcation trees of a parametrically driven pendulum
,”
J. Vib. Test. Syst. Dyn.
1
(
2
),
93
134
(
2017
).
30.
S. Y.
Xing
and
A. C. J.
Luo
, “
Towards infinite bifurcation trees of period-1 motions to chaos in a time-delayed, twin-well Duffing oscillator
,”
J. Vib. Test. Syst. Dyn.
1
(
4
),
353
392
(
2017
).
31.
Y.
Xu
and
A. C. J.
Luo
, “
Sequent period-(2m−1) motions to chaos in the van der Pol oscillator
,”
Int. J. Dyn. Control
7
(
3
),
795
807
(
2019
).
32.
A. C. J.
Luo
and
C.
Guo
, “
A period-1 motion to chaos in a periodically forced, damped, double-pendulum
,”
J. Vib. Test. Syst. Dyn.
3
(
3
),
259
280
(
2019
).
33.
A. C. J.
Luo
,
Continuous Dynamical Systems
(
HEP/L&H Scientific
,
Beijing/Glen Carbon
,
2012
).
You do not currently have access to this content.