In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable periodic motions to chaos on the period-doubling cascaded bifurcation trees are determined through a discrete mapping method. The corresponding homoclinic orbits induced by the unstable periodic orbits are predicted analytically. A period-doubling bifurcation tree of period-1, period-2, and period-4 motions are generated as an example. The homoclinic orbits relative to unstable period-1, period-2, and period-4 motions are determined. Illustrations of homoclinic orbits and periodic orbits are given. This study presents how to determine infinite homoclinic orbits through unstable periodic orbits in three-dimensional or higher-dimensional nonlinear systems.
Skip Nav Destination
Article navigation
April 2021
Research Article|
April 01 2021
On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system
Special Collection:
Recent Advances in Modeling Complex Systems: Theory and Applications
Siyu Guo
;
Siyu Guo
Department of Mechanical and Mechatronics Engineering, Southern Illinois University Edwardsville
, Edwardsville, Illinois 62026-1805, USA
Search for other works by this author on:
Albert C. J. Luo
Albert C. J. Luo
a)
Department of Mechanical and Mechatronics Engineering, Southern Illinois University Edwardsville
, Edwardsville, Illinois 62026-1805, USA
a)Author to whom correspondence should be addressed: aluo@siue.edu
Search for other works by this author on:
a)Author to whom correspondence should be addressed: aluo@siue.edu
Note: This paper belongs to the Focus Issue, Recent Advances in Modeling Complex Systems: Theory and Applications.
Chaos 31, 043106 (2021)
Article history
Received:
January 14 2021
Accepted:
March 11 2021
Citation
Siyu Guo, Albert C. J. Luo; On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system. Chaos 1 April 2021; 31 (4): 043106. https://doi.org/10.1063/5.0044161
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00