In this paper, a simple chaotic memristor-based circuit with an external stimulation is proposed, and its basic dynamic properties are demonstrated. When the external perturbation becomes time varying and its frequency is low enough, the system has two-time scales, which can be employed to explore the mechanisms of symmetrical Hopf-induced bursting oscillations and delay effects. Furthermore, delay-times on Hopf-induced bursting at different frequencies of the external stimulation are measured. The results show that the relationship between the delay-time and external frequency is subject to a power law. In order to enhance the existing chaos of the system, a 4D system is developed by adding a nonlinear state feedback controller, which shows hyperchaos under some suitable parameters. These two systems are implemented on Multisim and hardware platforms, and the corresponding experimental results verify the correctness of the numerical simulations.

1.
L. T.
Abobda
and
P.
Woafo
, “
Subharmonic and bursting oscillations of a ferromagnetic mass fixed on a spring and subjected to an AC electromagnet
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
3082
3091
(
2012
).
2.
M.
Courbage
,
O. V.
Maslennikov
, and
V. I.
Nekorkin
, “
Synchronization in time-discrete model of two electrically coupled spike-bursting neurons
,”
Chaos Solitons Fractals
45
,
645
659
(
2012
).
3.
X.
Han
,
Y.
Yue
, and
C.
Zhang
, “
A novel route to chaotic bursting in the parametrically driven Lorenz system
,”
Nonlinear Dyn.
88
,
2889
2897
(
2017
).
4.
H.
Dai
,
X.
Yue
, and
C.
Liu
, “
A multiple scale time domain collocation method for solving non-linear dynamical system
,”
Int J Non-Linear Mech.
67
,
342
351
(
2014
).
5.
X. J.
Han
,
F. B.
Xia
,
P.
Ji
, and
Q. S.
Bi
, “
Hopf-bifurcation-delay-induced bursting patterns in a modified circuit system
,”
Commun. Nonlinear Sci. Numer. Simul.
36
,
517
527
(
2016
).
6.
S. T.
Kingni
,
L.
Keuninckx
,
P.
Woafo
,
G.
Sande
, and
J.
Danckaert
, “
Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: Theory and electronic implementation
,”
Nonlinear Dyn.
73
,
1111
1123
(
2013
).
7.
H.
Wu
,
Y.
Ye
,
M.
Chen
,
Q.
Xu
, and
B.
Bao
, “
Extremely slow passages in low-pass filter-based memristive oscillator
,”
Nonlinear Dyn.
97
,
2339
2353
(
2019
).
8.
F.
Yuan
,
Y.
Jin
, and
Y.
Li
, “
Self-reproducing chaos and bursting oscillation analysis in a meminductor-based conservative system
,”
Chaos
30
,
053127
(
2020
).
9.
M.
Watts
,
J.
Tabak
,
C.
Zimliki
,
A.
Sherman
, and
R.
Bertram
, “
Slow variable dominance and phase resetting in phantom bursting
,”
J. Theor. Biol.
276
,
218
228
(
2011
).
10.
E. M.
Izhikevich
, “
Neural excitability, spiking and bursting
,”
Int. J. Bifurcation Chaos
10
,
1171
1266
(
2000
).
11.
Q. S.
Bi
,
R.
Ma
, and
Z.
Zhang
, “
Bifurcation mechanism of the bursting oscillations in periodically excited dynamical system with two time scales
,”
Nonlinear Dyn.
79
,
101
110
(
2015
).
12.
Z. H.
Wen
,
Z. J.
Li
, and
X.
Li
, “
Bursting oscillations and bifurcation mechanism in memristor-based Shimizu-Morioka system with two time scales
,”
Chaos Solitons Fractals
128
,
58
70
(
2019
).
13.
Z.
Song
and
J.
Xu
, “
Codimension-two bursting analysis in the delayed neural system with external stimulations
,”
Nonlinear Dyn.
67
,
309
328
(
2012
).
14.
Y. H.
Qian
and
D. M.
Yan
, “
Fast–slow dynamics analysis of a coupled Duffing system with periodic excitation
,”
Int. J. Bifurcation Chaos
28
,
1850148
(
2018
).
15.
S.
Zheng
,
X.
Han
, and
Q.
Bi
, “
Bifurcations and fast-slow behaviors in a hyperchaotic dynamical system
,”
Commun. Nonlinear Sci. Numer. Simul.
16
,
1998
2005
(
2011
).
16.
L.
Huang
,
G.
Wu
,
Z.
Zhang
, and
Q.
Bi
, “
Fast–slow dynamics and bifurcation mechanism in a novel chaotic system
,”
Int. J. Bifurcation Chaos
29
,
1930028
(
2019
).
17.
S. M.
Baer
,
T.
Erneux
, and
J.
Rinzel
, “
The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance
,”
SIAM J. Appl. Math.
49
,
55
71
(
1989
).
18.
J.
Rinzel
,
Bursting Oscillation in an Excitable Membrane Model
(
Springer-Verlag
,
Berlin
,
1985
), pp.
304
316
.
19.
C.
Zhou
,
Z.
Li
,
F.
Xie
,
M.
Ma
, and
Y.
Zhang
, “
Bursting oscillations in Sprott b system with multi-frequency slow excitations: Two novel “Hopf/Hopf”-hysteresis-induced bursting and complex AMB rhythms
,”
Nonlinear Dyn.
97
,
2799
2811
(
2019
).
20.
D.
Premraja
,
K.
Sureshab
,
B.
Tanmoy
, and
K.
Thamilmarana
, “
An experimental study of slow passage through Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
37
,
212
221
(
2016
).
21.
G. R.
Chen
and
D.
Lai
, “
Feedback control of Lyapunov exponents for discrete-time dynamical systems
,”
Int. J. Bifurcation Chaos
6
,
1341
1349
(
1996
).
22.
K.
Sun
,
X.
Liu
, and
C.
Zhu
, “
Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system
,”
Nonlinear Dyn.
69
,
1383
1391
(
2012
).
23.
X. Y.
Wang
and
G. B.
Chao
, “
Hyperchaos generated from the unified chaotic system and its control
,”
Int. J. Mod. Phys. B
24
,
4619
4637
(
2010
).
24.
S.
Yanchuk
and
T.
Kapitaniak
, “
Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems
,”
Phys. Rev. E
64
,
056235
(
2001
).
25.
N.
Stankevich
,
A.
Kazakov
, and
S.
Gonchenko
, “
Scenarios of hyperchaos occurrence in 4D Rössler system
,”
Chaos
30
,
123129
(
2020
).
26.
S.
Yanchuk
and
T.
Kapitaniak
, “
Chaos–hyperchaos transition in coupled Rössler systems
,”
Phys. Lett. A
290
,
139
144
(
2001
).
27.
N.
Stankevich
,
A.
Kuznetsov
,
E.
Popova
, and
E.
Seleznev
, “
Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator
,”
Nonlinear Dyn.
97
,
2355
2370
(
2019
).
28.
B. C.
Bao
,
H. Z.
Li
,
L.
Zhu
,
X.
Zhang
, and
M.
Chen
, “
Initial-switched boosting bifurcations in 2d hyperchaotic map
,”
Chaos
30
,
033107
(
2020
).
29.
C.
Shen
,
S.
Yu
,
J.
Lu
, and
G.
Chen
, “
Constructing hyperchaotic systems at will
,”
Int. J. Circuit Theory Appl.
43
,
2039
2056
(
2016
).
30.
F.
Yang
,
J.
Mou
, and
J.
Liu
, “
Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application
,”
Signal Process.
169
,
107373
(
2020
).
31.
L. O.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
32.
M.
Chen
,
M. X.
Sun
,
H.
Bao
,
Y. H.
Hu
, and
B. C.
Bao
, “
Flux-charge analysis of two-memristor-based Chua’s circuit: Dimensionality decreasing model for detecting extreme multistability
,”
IEEE Trans. Ind. Electron.
67
,
2197
2206
(
2020
).
33.
F.
Yuan
,
Y.
Deng
,
Y. X.
Li
, and
G. Y.
Wang
, “
The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit
,”
Nonlinear Dyn.
96
,
389
405
(
2019
).
34.
F.
Yuan
,
G. Y.
Wang
, and
X. W.
Wang
, “
Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis
,”
Chaos
27
,
033103
(
2017
).
35.
G. Y.
Wang
,
F.
Yuan
,
G. R.
Chen
, and
Y.
Zhang
, “
Coexisting multiple attractors and riddled basins of a memristive system
,”
Chaos
28
,
013125
(
2018
).
36.
Y.
Deng
and
Y. X.
Li
, “
A memristive conservative chaotic circuit consisting of a memristor and a capacitor
,”
Chaos
30
,
013120
(
2020
).
37.
H. G.
Wu
,
Y.
Ye
,
B. C.
Bao
,
M.
Chen
, and
Q.
Xu
, “
Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system
,”
Chaos Solitons Fractals
121
,
178
185
(
2019
).
38.
H.
Kizmaz
,
U. E.
Kocamaz
, and
Y.
Uyaroglu
, “
Control of memristor-based simplest chaotic circuit with one-state controllers
,”
J. Circuits Syst. Comput.
28
,
1950007
(
2018
).
39.
B. C.
Bao
,
H.
Li
,
H.
Wu
,
X.
Zhang
, and
M.
Chen
, “
Hyperchaos in a second-order discrete memristor-based map model
,”
Electron. Lett.
56
(
15
),
769
770
(
2020
).
40.
M. D.
Ventra
,
Y. V.
Pershin
, and
L. O.
Chua
, “
Circuit elements with memory: Memristors, memcapacitors, and meminductors
,”
Proc. IEEE
29
,
1717
1724
(
2009
).
41.
C.
Shen
,
S.
Yu
,
J.
Lu
, and
G.
Chen
, “
Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model
,”
IEEE Trans. Circuits Syst.
61
,
2380
2389
(
2017
).
42.
C.
Shen
,
S.
Yu
,
J.
Lu
, and
G.
Chen
, “
A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation
,”
IEEE Trans. Circuits Syst.
61
,
854
864
(
2017
).
You do not currently have access to this content.