The ubiquitous coupled relationship between network systems has become an essential paradigm to depict complex systems. A remarkable property in the coupled complex systems is that a functional node should have multiple external support associations in addition to maintaining the connectivity of the local network. In this paper, we develop a theoretical framework to study the structural robustness of the coupled network with multiple useful dependency links. It is defined that a functional node has the broadest connectivity within the internal network and requires at least M support link of the other network to function. In this model, we present exact analytical expressions for the process of cascading failures, the fraction of functional nodes in the stable state, and provide a calculation method of the critical threshold. The results indicate that the system undergoes an abrupt phase transition behavior after initial failure. Moreover, the minimum inner and inter-connectivity density to maintain system survival is graphically presented at different multiple effective dependency links. Furthermore, we find that the system needs more internal connection densities to avoid collapse when it requires more effective support links. These findings allow us to reveal the details of a more realistic coupled complex system and develop efficient approaches for designing resilient infrastructure.

1.
L. M.
Shekhtman
,
M. M.
Danziger
, and
S.
Havlin
, “
Recent advances on failure and recovery in networks of networks
,”
Chaos, Solitons Fractals
90
,
28
36
(
2016
).
2.
J.
Gao
,
S. V.
Buldyrev
,
H.
Eugene Stanley
, and
S.
Havlin
, “
Networks formed from interdependent networks
,”
Nat. Phys.
8
(
1
),
40
48
(
2012
).
3.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
(
2
),
167
256
(
2003
).
4.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
(
1
),
47
(
2002
).
5.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
(
6684
),
440
442
(
1998
).
6.
R.
Cohen
and
S.
Havlin
,
Complex Networks: Structure, Robustness and Function
(
Cambridge University Press
,
2010
).
7.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
,
Z.
Wang
,
S.
Boccaletti
, and
A.
Szolnoki
, “
Statistical physics of human cooperation
,”
Phys. Rep.
687
,
1
51
(
2017
).
8.
Y.
Liu
,
H.
Sanhedrai
,
G.
Dong
,
L. M.
Shekhtman
,
F.
Wang
,
S. V.
Buldyrev
, and
S.
Havlin
, “
Efficient network immunization under limited knowledge
,”
Nat. Sci. Rev.
8
,
nwaa229
(
2021
).
9.
S.
Havlin
,
H.
Eugene Stanley
,
A.
Bashan
,
J.
Gao
, and
D. Y.
Kenett
, “
Percolation of interdependent network of networks
,”
Chaos, Solitons Fractals
72
,
4
19
(
2015
).
10.
Z.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Interdependent network reciprocity in evolutionary games
,”
Sci. Rep.
3
,
1183
(
2013
).
11.
S. V.
Buldyrev
,
R.
Parshani
,
G.
Paul
,
H.
Eugene Stanley
, and
S.
Havlin
, “
Catastrophic cascade of failures in interdependent networks
,”
Nature
464
(
7291
),
1025
1028
(
2010
).
12.
P.
Goldstein
,
I.
Weissman-Fogel
,
G.
Dumas
, and
S. G.
Shamay-Tsoory
, “
Brain-to-brain coupling during handholding is associated with pain reduction
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
11
),
E2528
E2537
(
2018
).
13.
F.
Hellmann
,
P.
Schultz
,
P.
Jaros
,
R.
Levchenko
,
T.
Kapitaniak
,
J.
Kurths
, and
Y.
Maistrenko
, “
Network-induced multistability through lossy coupling and exotic solitary states
,”
Nat. Commun.
11
(
1
),
1
9
(
2020
).
14.
X.
Liu
,
H.
Eugene Stanley
, and
J.
Gao
, “
Breakdown of interdependent directed networks
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
5
),
1138
1143
(
2016
).
15.
G.
Dong
,
J.
Gao
,
R.
Du
,
L.
Tian
,
H.
Eugene Stanley
, and
S.
Havlin
, “
Robustness of network of networks under targeted attack
,”
Phys. Rev. E
87
(
5
),
052804
(
2013
).
16.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
17.
R.
Lambiotte
,
M.
Rosvall
, and
I.
Scholtes
, “
From networks to optimal higher-order models of complex systems
,”
Nat. Phys.
15
(
4
),
313
320
(
2019
).
18.
G.
Bianconi
,
Multilayer Networks: Structure and Function
(
Oxford University Press
,
2018
).
19.
B.
Schäfer
,
D.
Witthaut
,
M.
Timme
, and
V.
Latora
, “
Dynamically induced cascading failures in power grids
,”
Nat. Commun.
9
(
1
),
1
13
(
2018
).
20.
J.
Gao
,
S. V.
Buldyrev
,
S.
Havlin
, and
H.
Eugene Stanley
, “
Robustness of a network of networks
,”
Phys. Rev. Lett.
107
(
19
),
195701
(
2011
).
21.
G.
Dong
,
J.
Gao
,
L.
Tian
,
R.
Du
, and
Y.
He
, “
Percolation of partially interdependent networks under targeted attack
,”
Phys. Rev. E
85
(
1
),
016112
(
2012
).
22.
H.
Zhang
,
J.
Zhou
,
Y.
Zou
,
M.
Tang
,
G.
Xiao
, and
H.
Eugene Stanley
, “
Asymmetric interdependent networks with multiple-dependence relation
,”
Phys. Rev. E
101
(
2
),
022314
(
2020
).
23.
E. A.
Leicht
and
R. M.
D’Souza
, “Percolation on interacting networks,” arXiv:0907.0894 (2009).
24.
M.
Szell
,
R.
Lambiotte
, and
S.
Thurner
, “
Multirelational organization of large-scale social networks in an online world
,”
Proc. Natl. Acad. Sci. U.S.A.
107
(
31
),
13636
13641
(
2010
).
25.
G.
Dong
,
J.
Fan
,
L. M.
Shekhtman
,
S.
Shai
,
R.
Du
,
L.
Tian
,
X.
Chen
,
H.
Eugene Stanley
, and
S.
Havlin
, “
Resilience of networks with community structure behaves as if under an external field
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
27
),
6911
6915
(
2018
).
26.
Y.
Hu
,
B.
Ksherim
,
R.
Cohen
, and
S.
Havlin
, “
Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions
,”
Phys. Rev. E
84
(
6
),
066116
(
2011
).
27.
S. D. S.
Reis
,
Y.
Hu
,
A.
Babino
,
J. S.
Andrade
, Jr.
,
S.
Canals
,
M.
Sigman
, and
H. A.
Makse
, “
Avoiding catastrophic failure in correlated networks of networks
,”
Nat. Phys.
10
(
10
),
762
767
(
2014
).
28.
J.
Shao
,
S. V.
Buldyrev
,
S.
Havlin
, and
H.
Eugene Stanley
, “
Cascade of failures in coupled network systems with multiple support-dependence relations
,”
Phys. Rev. E
83
(
3
),
036116
(
2011
).
29.
G.
Dong
,
Y.
Chen
,
F.
Wang
,
R.
Du
,
L.
Tian
, and
H.
Eugene Stanley
, “
Robustness on interdependent networks with a multiple-to-multiple dependent relationship
,”
Chaos
29
(
7
),
073107
(
2019
).
You do not currently have access to this content.