In this paper, we propose and study a two-layer network composed of a Petri net in the first layer and a ring of coupled Hindmarsh–Rose neurons in the second layer. Petri nets are appropriate platforms not only for describing sequential processes but also for modeling information circulation in complex systems. Networks of neurons, on the other hand, are commonly used to study synchronization and other forms of collective behavior. Thus, merging both frameworks into a single model promises fascinating new insights into neuronal collective behavior that is subject to changes in network connectivity. In our case, the Petri net in the first layer manages the existence of excitatory and inhibitory links among the neurons in the second layer, thereby making the chemical connections time-varying. We focus on the emergence of different types of collective behavior in the model, such as synchronization, chimeras, and solitary states, by considering different inhibitory and excitatory tokens in the Petri net. We find that the existence of only inhibitory or excitatory tokens disturbs the synchronization of electrically coupled neurons and leads toward chimera and solitary states.

1.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
2.
U.
Ozturk
,
N.
Marwan
,
O.
Korup
,
H.
Saito
,
A.
Agarwal
,
M. J.
Grossman
,
M.
Zaiki
, and
J.
Kurths
, “
Complex networks for tracking extreme rainfall during typhoons
,”
Chaos
28
,
075301
(
2018
).
3.
A.
Agarwal
,
N.
Marwan
,
R.
Maheswaran
,
U.
Ozturk
,
J.
Kurths
, and
B.
Merz
, “
Optimal design of hydrometric station networks based on complex network analysis
,”
Hydrol. Earth Syst. Sci.
24
,
2235
2251
(
2020
).
4.
A.
Agarwal
,
L.
Caesar
,
N.
Marwan
,
R.
Maheswaran
,
B.
Merz
, and
J.
Kurths
, “
Network-based identification and characterization of teleconnections on different scales
,”
Sci. Rep.
9
,
8808
(
2019
).
5.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
(
2015
).
6.
Z.
Wang
,
C. Y.
Xia
,
S.
Meloni
,
C. S.
Zhou
, and
Y.
Moreno
, “
Impact of social punishment on cooperative behavior in complex networks
,”
Sci. Rep.
3
,
3055
(
2013
).
7.
J.
Ma
and
J.
Tang
, “
A review for dynamics in neuron and neuronal network
,”
Nonlinear Dyn.
3
,
1569
1578
(
2017
).
8.
K.
Usha
and
P.
Subha
, “
Collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with electrical, chemical and field couplings
,”
Nonlinear Dyn.
96
,
2115
2124
(
2019
).
9.
E.
Nikitin
,
A. Y.
Malyshev
,
P.
Balaban
, and
M.
Volgushev
, “
Physiological aspects of the use of the Hodgkin–Huxley model of action potential generation for neurons in invertebrates and vertebrates
,”
Neurosci. Behav. Physiol.
47
,
751
757
(
2017
).
10.
B. K.
Bera
,
S.
Majhi
,
D.
Ghosh
, and
M.
Perc
, “
Chimera states: Effects of different coupling topologies
,”
Europhys. Lett.
118
,
10001
(
2017
).
11.
M.
Vaiana
and
S. F.
Muldoon
, “
Multilayer brain networks
,”
J. Nonlinear Sci.
30
,
2147
2168
(
2020
).
12.
Y.
Zhuang
and
O.
Yağan
, “
Information propagation in clustered multilayer networks
,”
IEEE Trans. Netw. Sci. Eng.
3
,
211
224
(
2016
).
13.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
,
Z.
Wang
,
S.
Boccaletti
, and
A.
Szolnoki
, “
Statistical physics of human cooperation
,”
Phys. Rep.
687
,
1
51
(
2017
).
14.
F.
Nazarimehr
,
S.
Panahi
,
M.
Jalili
,
M.
Perc
,
S.
Jafari
, and
B.
Ferčec
, “
Multivariable coupling and synchronization in complex networks
,”
Appl. Math. Comput.
372
,
124996
(
2020
).
15.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Chimera states in a multilayer network of coupled and uncoupled neurons
,”
Chaos
27
,
073109
(
2017
).
16.
J.
Ma
,
L.
Huang
,
J.
Tang
,
H.-P.
Ying
, and
W.-Y.
Jin
, “
Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
4281
4293
(
2012
).
17.
L.
Lu
,
Y.
Jia
,
M.
Ge
,
Y.
Xu
, and
A.
Li
, “
Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises
,”
Nonlinear Dyn.
100
,
877
889
(
2020
).
18.
S.
Malik
and
A.
Mir
, “
Synchronization of Hindmarsh Rose neurons
,”
Neural Netw.
123
,
372
380
(
2020
).
19.
A.
Bahramianl
,
A.
Nouril
,
F.
Towhidkhah
, and
S.
Jafari
, “Introducing neural-network based model and pretraining method to design central pattem generator (CPG),” in 2019 26th National and 4th International Iranian Conference on Biomedical Engineering (ICBME) (IEEE, 2019), pp. 15–20.
20.
S.
Mostaghimi
,
F.
Nazarimehr
,
S.
Jafari
, and
J.
Ma
, “
Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow
,”
Appl. Math. Comput.
348
,
42
56
(
2019
).
21.
N.
Zandi-Mehran
,
S.
Jafari
,
S. M. R. H.
Golpayegani
,
F.
Nazarimehr
, and
M.
Perc
, “
Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field
,”
Nonlinear Dyn.
100
,
1809
1824
(
2020
).
22.
J.
Ma
,
L.
Mi
,
P.
Zhou
,
Y.
Xu
, and
T.
Hayat
, “
Phase synchronization between two neurons induced by coupling of electromagnetic field
,”
Appl. Math. Comput.
307
,
321
328
(
2017
).
23.
S.
Krishnagopal
,
J.
Lehnert
,
W.
Poel
,
A.
Zakharova
, and
E.
Schöll
, “
Synchronization patterns: From network motifs to hierarchical networks
,”
Philos. Trans. R. Soc. London A
375
,
20160216
(
2017
).
24.
A.
Agarwal
,
N.
Marwan
,
M.
Rathinasamy
,
B.
Merz
, and
J.
Kurths
, “
Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach
,”
Nonlinear Process. Geophys.
24
,
599
611
(
2017
).
25.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
26.
R. D.
Traub
and
R.
Wong
, “
Cellular mechanism of neuronal synchronization in epilepsy
,”
Science
216
,
745
747
(
1982
).
27.
P.
Sauseng
and
W.
Klimesch
, “
What does phase information of oscillatory brain activity tell us about cognitive processes?
,”
Neurosci. Biobehav. Rev.
32
,
1001
1013
(
2008
).
28.
B. K.
Bera
,
D.
Ghosh
, and
M.
Lakshmanan
, “
Chimera states in bursting neurons
,”
Phys. Rev. E
93
,
012205
(
2016
).
29.
D.
Dudkowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Occurrence and stability of chimera states in coupled externally excited oscillators
,”
Chaos
26
,
116306
(
2016
).
30.
D.
Dudkowski
,
J.
Wojewoda
,
K.
Czołczyński
, and
T.
Kapitaniak
, “
Transient chimera-like states for forced oscillators
,”
Chaos
30
,
011102
(
2020
).
31.
T.
Chouzouris
,
I.
Omelchenko
,
A.
Zakharova
,
J.
Hlinka
,
P.
Jiruska
, and
E.
Schöll
, “
Chimera states in brain networks: Empirical neural vs modular fractal connectivity
,”
Chaos
28
,
045112
(
2018
).
32.
D. C.
Gooding
,
K. E.
Luh
, and
K. A.
Tallent
, “
Evidence of schizophrenia patients’ reduced perceptual biases in response to emotion chimera
,”
Schizophr. Bull.
27
,
709
716
(
2001
).
33.
N.
Frolov
,
V.
Maksimenko
,
S.
Majhi
,
S.
Rakshit
,
D.
Ghosh
, and
A.
Hramov
, “
Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling
,”
Chaos
30
,
081102
(
2020
).
34.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Chimera states in uncoupled neurons induced by a multilayer structure
,”
Sci. Rep.
6
,
39033
(
2016
).
35.
M.
Mikhaylenko
,
L.
Ramlow
,
S.
Jalan
, and
A.
Zakharova
, “
Weak multiplexing in neural networks: Switching between chimera and solitary states
,”
Chaos
29
,
023122
(
2019
).
36.
E.
Rybalova
,
V.
Anishchenko
,
G.
Strelkova
, and
A.
Zakharova
, “
Solitary states and solitary state chimera in neural networks
,”
Chaos
29
,
071106
(
2019
).
37.
J.
Patrycja
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
, “
Solitary states for coupled oscillators with inertia
,”
Chaos
28
,
011103
(
2018
).
38.
F.
Hellmann
,
P.
Schultz
,
P.
Jaros
,
R.
Levchenko
,
T.
Kapitaniak
,
J.
Kurths
, and
Y.
Maistrenko
, “
Network-induced multistability through lossy coupling and exotic solitary states
,”
Nat. Commun.
11
,
592
(
2020
).
39.
S.
Majhi
,
T.
Kapitaniak
, and
D.
Ghosh
, “
Solitary states in multiplex networks owing to competing interactions
,”
Chaos
29
,
013108
(
2019
).
40.
Z.
Hagos
,
T.
Stankovski
,
J.
Newman
,
T.
Pereira
,
P. V.
McClintock
, and
A.
Stefanovska
, “
Synchronization transitions caused by time-varying coupling functions
,”
Philos. Trans. R. Soc.
377
,
20190275
(
2019
).
41.
T.
Stankovski
, “
Time-varying coupling functions: Dynamical inference and cause of synchronization transitions
,”
Phys. Rev. E
95
,
022206
(
2017
).
42.
S.
Rakshit
,
B. K.
Bera
,
D.
Ghosh
, and
S.
Sinha
, “
Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks
,”
Phys. Rev. E
97
,
052304
(
2018
).
43.
S.
Rakshit
,
S.
Majhi
,
B. K.
Bera
,
S.
Sinha
, and
D.
Ghosh
, “
Time-varying multiplex network: Intralayer and interlayer synchronization
,”
Phys. Rev. E
96
,
062308
(
2017
).
44.
I. V.
Belykh
,
V. N.
Belykh
, and
M.
Hasler
, “
Blinking model and synchronization in small-world networks with a time-varying coupling
,”
Physica D
195
,
188
206
(
2004
).
45.
A.
Destexhe
and
E.
Marder
, “
Plasticity in single neuron and circuit computations
,”
Nature
431
,
789
795
(
2004
).
46.
F.
Parastesh
,
C.-Y.
Chen
,
H.
Azarnoush
,
S.
Jafari
, and
B.
Hatef
, “
Synchronization patterns in a blinking multilayer neuronal network
,”
Eur. Phys. J. Spec. Top.
228
,
2465
2474
(
2019
).
47.
Z.
Wang
,
S.
Baruni
,
F.
Parastesh
,
S.
Jafari
,
D.
Ghosh
,
M.
Perc
, and
I.
Hussain
, “
Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity
,”
Neurocomputing
406
,
117
126
(
2020
).
48.
T.
Murata
, “
Petri nets: Properties, analysis and applications
,”
Proc. IEEE
77
,
541
580
(
1989
).
49.
J.
Ashraf
,
J.
Ahmad
,
A.
Ali
, and
Z.
Ul-Haq
, “
Analyzing the behavior of neuronal pathways in Alzheimer’s disease using Petri net modeling approach
,”
Front. Neuroinf.
12
,
26
(
2018
).
50.
V. P.
Metta
,
K.
Krithivasan
, and
D.
Garg
, “Modeling spiking neural systems using timed Petri nets,” in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (IEEE, 2009), pp. 25–30.
51.
M.
Herajy
and
M.
Heiner
, “
Modeling and simulation of multi-scale environmental systems with generalized hybrid Petri nets
,”
Front. Environ. Sci.
3
,
53
(
2015
).
52.
F.
Liu
and
M.
Heiner
, “
Modeling membrane systems using colored stochastic Petri nets
,”
Nat. Comput.
12
,
617
629
(
2013
).
53.
M.
Herajy
and
M.
Heiner
, “
Adaptive and bio-semantics of continuous Petri nets: Choosing the appropriate interpretation
,”
Fundam. Inform.
160
,
53
80
(
2018
).
54.
F.
Liu
,
M.
Heiner
, and
D.
Gilbert
, “
Fuzzy Petri nets for modelling of uncertain biological systems
,”
Brief. Bioinform.
21
,
198
210
(
2020
).
55.
A.
Sackmann
,
M.
Heiner
, and
I.
Koch
, “
Application of Petri net based analysis techniques to signal transduction pathways
,”
BMC Bioinf.
7
,
482
(
2006
).
56.
M.
Heiner
,
G.
Ventre
, and
D.
Wikarski
, “
A Petri net based methodology to integrate qualitative and quantitative analysis
,”
Inf. Softw. Technol.
36
,
435
441
(
1994
).
57.
M. K.
Habib
and
R. W.
Newcomb
, “
Neuron type processor modeling using a timed Petri net
,”
IEEE Trans. Neural Netw.
1
,
282
289
(
1990
).
58.
R.
Kim
,
J.
Gangolly
, and
P.
Elsas
, “
A framework for analytics and simulation of accounting information systems: A Petri net modeling primer
,”
Int. J. Acc. Inf.
27
,
30
54
(
2017
).
59.
J.
González-Miranda
, “
Complex bifurcation structures in the Hindmarsh–Rose neuron model
,”
Int. J. Bifurcat. Chaos
17
,
3071
3083
(
2007
).
60.
I.
Belykh
,
R.
Reimbayev
, and
K.
Zhao
, “
Synergistic effect of repulsive inhibition in synchronization of excitatory networks
,”
Phys. Rev. E
91
,
062919
(
2015
).
61.
D.
Alaçam
and
A.
Shilnikov
, “
Making a swim central pattern generator out of latent parabolic bursters
,”
Int. J. Bifurcat. Chaos
25
,
1540003
(
2015
).
You do not currently have access to this content.