Complex canard-type oscillatory regimes in stochastically forced flows of suspensions are studied. In this paper, we use the nonlinear dynamical model with a N-shaped rheological curve. Amplitude and frequency characteristics of self-oscillations in the zone of canard explosion are studied in dependence on the stiffness of this N-shaped function. A constructive role of random noise in the formation of complex oscillatory regimes is investigated. A phenomenon of the noise-induced splitting of stochastic cycles is discovered and studied both numerically and analytically by the stochastic sensitivity technique. Supersensitive canard cycles are described and their role in noise-induced transitions from order to chaos is discussed.

1.
D.
Lootens
,
H.
Van Damme
, and
P.
Hébraud
, “
Current trends in suspension rheology
,”
J. Non-Newton Fluid Mech.
157
,
147
150
(
2009
).
2.
L.
Isa
,
R.
Besseling
,
A. N.
Morozov
, and
W. C. K.
Poon
, “
Velocity oscillations in microfluidic flows of concentrated colloidal suspensions
,”
Phys. Rev. Lett.
102
,
058302
(
2009
).
3.
H. A.
Barnes
, “
Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
(
2
),
329
366
(
1989
).
4.
D.
Lootens
,
H.
Van Damme
, and
P.
Hébraud
, “
Giant stress fluctuations at the jamming transition
,”
Phys. Rev. Lett.
90
,
178301
(
2003
).
5.
G.
Bossis
, “Rheological phenomena in highly concentrated suspensions,” preprint (University Nice-Sophia Antipolice, 2011), p. 283.
6.
N. Y. C.
Lin
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
7.
I. A.
Bashkitseva
,
A. Yu.
Zubarev
,
L. Yu.
Iskakova
, and
L. B.
Ryashko
, “
On rheophysics of high-concentrated suspensions
,”
Colloid J.
71
,
446
454
(
2009
).
8.
R. D.
Deegan
, “
Stress hysteresis as the cause of persistent holes in particulate suspensions
,”
Phys. Rev. E
81
,
036319
(
2010
).
9.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Nonmonotonic flow curves of shear thickening suspensions
,”
Phys. Rev. E
91
,
052302
(
2015
).
10.
O.
Ozgen
,
M.
Kallmann
, and
E.
Brown
, “
An SPH model to simulate the dynamic behavior of shear thickening fluids
,”
Comput. Animat. Virtual Worlds
30
(
5
),
e1870
(
2019
).
11.
P. D.
Olmsted
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
12.
I. A.
Bashkitseva
,
A. Yu.
Zubarev
,
L. Yu.
Iskakova
, and
L. B.
Ryashko
, “
Noise-induced oscillations in the flow of concentrated suspensions
,”
J. Appl. Math. Mech.
76
(
4
),
466
474
(
2012
).
13.
I.
Bashkirtseva
and
L.
Ryashko
, “
Mixed-mode self-oscillations, stochastic excitability, and coherence resonance in flows of highly concentrated suspensions
,”
Nonlinear Dyn.
102
,
1837
1848
(
2020
).
14.
L. B.
Ryashko
, “
The stability of stochastically perturbed orbital motions
,”
J. Appl. Math. Mech.
60
(
4
),
579
590
(
1996
).
15.
I.
Bashkirtseva
,
L.
Ryashko
, and
P.
Stikhin
, “
Noise-induced backward bifurcations of stochastic 3D-cycles
,”
Fluctuation Noise Lett.
9
,
89
106
(
2010
).
16.
L.
Ryashko
, “
Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis
,”
Chaos
28
(
3
),
033602
(
2018
).
17.
I.
Bashkirtseva
and
L.
Ryashko
, “
Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps
,”
Chaos, Solitons Fractals
126
,
78
84
(
2019
).
18.
J.-L.
Callot
,
F.
Diener
, and
M.
Diener
, “
Le probleme de la ‘chasse au canard’
,”
C. R. Acad. Sci. Paris
286
,
1059
1061
(
1978
).
19.
E.
Benoît
,
J.-L.
Callot
,
F.
Diener
, and
M.
Diener
, “
Chasse au canards
,”
Collect. Math.
31
,
37
119
(
1981
).
20.
M.
Krupa
and
P.
Szmolyan
, “
Relaxation oscillation and canard explosion
,”
J. Differ. Equ.
174
,
312
368
(
2001
).
21.
J.
Guckenheimer
and
R.
Haiduc
, “
Canards at folded nodes
,”
Moscow Math. J.
5
,
91
103
(
2005
).
22.
P.
Slowiński
,
S.
Al-Ramadhani
, and
K.
Tsaneva-Atanasova
, “
Relaxation oscillations and canards in the Jirsa–Kelso excitator model: Global flow perspective
,”
Eur. Phys. J. Spec. Top.
227
,
591
601
(
2018
).
23.
M.
Brons
,
M.
Krupa
, and
M.
Wechselberger
, “
Mixed mode oscillations due to the generalized canard phenomenon
,”
Fields Inst. Commun.
49
,
39
63
(
2006
).
24.
C.
Kuehn
, “
From first Lyapunov coefficients to maximal canards
,”
Int. J. Bifurcation Chaos
20
(
5
),
1467
1475
(
2010
).
25.
M.
Desroches
and
M. R.
Jeffrey
, “
Canards and curvature: The ‘smallness of ε’ in slow–fast dynamics
,”
Proc. R. Soc. A
467
(
2132
),
2404
2421
(
2011
).
26.
A.
Vidal
and
J.-P.
Francoise
, “
Canard cycles in global dynamics
,”
Int. J. Bifurcation Chaos
22
(
2
),
1250026
(
2012
).
27.
M.
Wechselberger
,
J.
Mitry
, and
J.
Rinzel
, Canard Theory and Excitability, Lecture Notes in Mathematics Vol. 2102 (Springer Verlag, 2013), pp. 89–132.
28.
R.
Huzak
,
P.
De Maesschalck
, and
F.
Dumortier
, “
Primary birth of canard cycles in slow–fast codimension 3 elliptic bifurcations
,”
Commun. Pure Appl. Anal.
13
(
6
),
2641
2673
(
2014
).
29.
M.
Brons
and
K.
Bar-Eli
, “
Canard explosion and excitation in a model of the Belousov–Zhabotinskii reaction
,”
J. Phys. Chem.
95
,
8706
8713
(
1991
).
30.
J.
Moehlis
, “
Canards in a surface oxidation reaction
,”
J. Nonlinear Sci.
12
,
319
345
(
2002
).
31.
F.
Marino
,
G.
Catalán
,
P.
Sánchez
,
S.
Balle
, and
O.
Piro
, “
Thermo-optical ‘canard orbits’ and excitable limit cycles
,”
Phys. Rev. Lett.
92
,
073901
(
2004
).
32.
J.
Drover
,
J.
Rubin
,
J.
Su
, and
B.
Ermentrout
, “
Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies
,”
SIAM J. Appl. Math.
65
,
69
92
(
2004
).
33.
J.
Rankin
,
M.
Desroches
,
B.
Krauskopf
, and
M.
Lowenberg
, “
Canard cycles in aircraft ground dynamics
,”
Nonlinear Dyn.
66
,
681
688
(
2011
).
34.
M.
Brons
, “
Canard explosion of limit cycles in templator models of self-replication mechanisms
,”
J. Chem. Phys.
134
(
14
),
144105
(
2011
).
35.
F.
Marino
,
M.
Ciszak
,
S. F.
Abdalah
,
K.
Al-Naimee
,
R.
Meucci
, and
F. T.
Arecchi
, “
Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback
,”
Phys. Rev. E
84
,
047201
(
2011
).
36.
E.
Shchepakina
and
O.
Korotkova
, “
Canard explosion in chemical and optical systems
,”
Discrete Contin. Dyn. Syst. B
18
(
2
),
495
512
(
2013
).
37.
P. K.
Shaw
,
A. N.
Sekar Iyengar
, and
Md.
Nurujjaman
, “
Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field
,”
Phys. Plasmas
22
(
12
),
122301
(
2015
).
38.
J.
Shen
, “
Canard limit cycles and global dynamics in a singularly perturbed predator–prey system with non-monotonic functional response
,”
Nonlinear Anal. Real World Appl.
31
,
146
165
(
2016
).
39.
L.
Ryashko
and
E.
Slepukhina
, “
Noise-induced toroidal excitability in neuron model
,”
Commun. Nonlinear Sci. Numer. Simul.
82
,
105071
(
2020
).
40.
R. B.
Sowers
, “
Random perturbations of canards
,”
J. Theor. Probab.
21
,
824
889
(
2008
).
41.
N.
Berglund
,
B.
Gentz
, and
C.
Kuehn
, “
Hunting French ducks in a noisy environment
,”
J. Differ. Equ.
252
(
9
),
4786
4841
(
2012
).
42.
J. D.
Touboul
,
M.
Krupa
, and
M.
Desroches
, “
Noise-induced canard and mixed-mode oscillations in large-scale stochastic networks
,”
SIAM J. Appl. Math.
75
(
5
),
2024
2049
(
2015
).
43.
I.
Bashkirtseva
,
V.
Nasyrova
, and
L.
Ryashko
, “
Analysis of noise effects in a map-based neuron model with canard-type quasiperiodic oscillations
,”
Commun. Nonlinear Sci. Numer. Simul.
63
,
261
270
(
2018
).
44.
I.
Bashkirtseva
and
L.
Ryashko
, “
Noise-induced shifts in the population model with a weak Allee effect
,”
Physica A
491
,
28
36
(
2018
).
45.
I.
Bashkirtseva
,
L.
Ryashko
, and
S.
Zaitseva
, “
Analysis of nonlinear stochastic oscillations in the biochemical Goldbeter model
,”
Commun. Nonlinear Sci. Numer. Simul.
73
,
165
176
(
2019
).
46.
W. E.
Schiesser
,
The Numerical Method of Lines: Integration of Partial Differential Equations
(
Academic Press
,
San Diego
,
1991
).
47.
M.
Desroches
,
M.
Krupa
, and
S.
Rodrigues
, “
Inflection, canards and excitability threshold in neuronal models
,”
J. Math. Biol.
67
,
989
1017
(
2013
).
You do not currently have access to this content.