Complex canard-type oscillatory regimes in stochastically forced flows of suspensions are studied. In this paper, we use the nonlinear dynamical model with a N-shaped rheological curve. Amplitude and frequency characteristics of self-oscillations in the zone of canard explosion are studied in dependence on the stiffness of this N-shaped function. A constructive role of random noise in the formation of complex oscillatory regimes is investigated. A phenomenon of the noise-induced splitting of stochastic cycles is discovered and studied both numerically and analytically by the stochastic sensitivity technique. Supersensitive canard cycles are described and their role in noise-induced transitions from order to chaos is discussed.
REFERENCES
1.
D.
Lootens
, H.
Van Damme
, and P.
Hébraud
, “Current trends in suspension rheology
,” J. Non-Newton Fluid Mech.
157
, 147
–150
(2009
). 2.
L.
Isa
, R.
Besseling
, A. N.
Morozov
, and W. C. K.
Poon
, “Velocity oscillations in microfluidic flows of concentrated colloidal suspensions
,” Phys. Rev. Lett.
102
, 058302
(2009
). 3.
H. A.
Barnes
, “Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,” J. Rheol.
33
(2
), 329
–366
(1989
). 4.
D.
Lootens
, H.
Van Damme
, and P.
Hébraud
, “Giant stress fluctuations at the jamming transition
,” Phys. Rev. Lett.
90
, 178301
(2003
). 5.
G.
Bossis
, “Rheological phenomena in highly concentrated suspensions,” preprint (University Nice-Sophia Antipolice, 2011), p. 283.6.
N. Y. C.
Lin
, B. M.
Guy
, M.
Hermes
, C.
Ness
, J.
Sun
, W. C. K.
Poon
, and I.
Cohen
, “Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,” Phys. Rev. Lett.
115
, 228304
(2015
). 7.
I. A.
Bashkitseva
, A. Yu.
Zubarev
, L. Yu.
Iskakova
, and L. B.
Ryashko
, “On rheophysics of high-concentrated suspensions
,” Colloid J.
71
, 446
–454
(2009
). 8.
R. D.
Deegan
, “Stress hysteresis as the cause of persistent holes in particulate suspensions
,” Phys. Rev. E
81
, 036319
(2010
). 9.
R.
Mari
, R.
Seto
, J. F.
Morris
, and M. M.
Denn
, “Nonmonotonic flow curves of shear thickening suspensions
,” Phys. Rev. E
91
, 052302
(2015
). 10.
O.
Ozgen
, M.
Kallmann
, and E.
Brown
, “An SPH model to simulate the dynamic behavior of shear thickening fluids
,” Comput. Animat. Virtual Worlds
30
(5
), e1870
(2019
). 11.
P. D.
Olmsted
, “Perspectives on shear banding in complex fluids
,” Rheol. Acta
47
, 283
–300
(2008
). 12.
I. A.
Bashkitseva
, A. Yu.
Zubarev
, L. Yu.
Iskakova
, and L. B.
Ryashko
, “Noise-induced oscillations in the flow of concentrated suspensions
,” J. Appl. Math. Mech.
76
(4
), 466
–474
(2012
). 13.
I.
Bashkirtseva
and L.
Ryashko
, “Mixed-mode self-oscillations, stochastic excitability, and coherence resonance in flows of highly concentrated suspensions
,” Nonlinear Dyn.
102
, 1837
–1848
(2020
). 14.
L. B.
Ryashko
, “The stability of stochastically perturbed orbital motions
,” J. Appl. Math. Mech.
60
(4
), 579
–590
(1996
). 15.
I.
Bashkirtseva
, L.
Ryashko
, and P.
Stikhin
, “Noise-induced backward bifurcations of stochastic 3D-cycles
,” Fluctuation Noise Lett.
9
, 89
–106
(2010
). 16.
L.
Ryashko
, “Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis
,” Chaos
28
(3
), 033602
(2018
). 17.
I.
Bashkirtseva
and L.
Ryashko
, “Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps
,” Chaos, Solitons Fractals
126
, 78
–84
(2019
). 18.
J.-L.
Callot
, F.
Diener
, and M.
Diener
, “ Le probleme de la ‘chasse au canard’
,” C. R. Acad. Sci. Paris
286
, 1059
–1061
(1978
).19.
E.
Benoît
, J.-L.
Callot
, F.
Diener
, and M.
Diener
, “Chasse au canards
,” Collect. Math.
31
, 37
–119
(1981
).20.
M.
Krupa
and P.
Szmolyan
, “Relaxation oscillation and canard explosion
,” J. Differ. Equ.
174
, 312
–368
(2001
). 21.
J.
Guckenheimer
and R.
Haiduc
, “Canards at folded nodes
,” Moscow Math. J.
5
, 91
–103
(2005
). 22.
P.
Slowiński
, S.
Al-Ramadhani
, and K.
Tsaneva-Atanasova
, “Relaxation oscillations and canards in the Jirsa–Kelso excitator model: Global flow perspective
,” Eur. Phys. J. Spec. Top.
227
, 591
–601
(2018
). 23.
M.
Brons
, M.
Krupa
, and M.
Wechselberger
, “Mixed mode oscillations due to the generalized canard phenomenon
,” Fields Inst. Commun.
49
, 39
–63
(2006
).24.
C.
Kuehn
, “From first Lyapunov coefficients to maximal canards
,” Int. J. Bifurcation Chaos
20
(5
), 1467
–1475
(2010
). 25.
M.
Desroches
and M. R.
Jeffrey
, “Canards and curvature: The ‘smallness of ’ in slow–fast dynamics
,” Proc. R. Soc. A
467
(2132
), 2404
–2421
(2011
). 26.
A.
Vidal
and J.-P.
Francoise
, “Canard cycles in global dynamics
,” Int. J. Bifurcation Chaos
22
(2
), 1250026
(2012
). 27.
M.
Wechselberger
, J.
Mitry
, and J.
Rinzel
, Canard Theory and Excitability, Lecture Notes in Mathematics Vol. 2102 (Springer Verlag, 2013), pp. 89–132.28.
R.
Huzak
, P.
De Maesschalck
, and F.
Dumortier
, “Primary birth of canard cycles in slow–fast codimension 3 elliptic bifurcations
,” Commun. Pure Appl. Anal.
13
(6
), 2641
–2673
(2014
). 29.
M.
Brons
and K.
Bar-Eli
, “Canard explosion and excitation in a model of the Belousov–Zhabotinskii reaction
,” J. Phys. Chem.
95
, 8706
–8713
(1991
). 30.
J.
Moehlis
, “Canards in a surface oxidation reaction
,” J. Nonlinear Sci.
12
, 319
–345
(2002
). 31.
F.
Marino
, G.
Catalán
, P.
Sánchez
, S.
Balle
, and O.
Piro
, “Thermo-optical ‘canard orbits’ and excitable limit cycles
,” Phys. Rev. Lett.
92
, 073901
(2004
). 32.
J.
Drover
, J.
Rubin
, J.
Su
, and B.
Ermentrout
, “Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies
,” SIAM J. Appl. Math.
65
, 69
–92
(2004
). 33.
J.
Rankin
, M.
Desroches
, B.
Krauskopf
, and M.
Lowenberg
, “Canard cycles in aircraft ground dynamics
,” Nonlinear Dyn.
66
, 681
–688
(2011
). 34.
M.
Brons
, “Canard explosion of limit cycles in templator models of self-replication mechanisms
,” J. Chem. Phys.
134
(14
), 144105
(2011
). 35.
F.
Marino
, M.
Ciszak
, S. F.
Abdalah
, K.
Al-Naimee
, R.
Meucci
, and F. T.
Arecchi
, “Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback
,” Phys. Rev. E
84
, 047201
(2011
). 36.
E.
Shchepakina
and O.
Korotkova
, “Canard explosion in chemical and optical systems
,” Discrete Contin. Dyn. Syst. B
18
(2
), 495
–512
(2013
). 37.
P. K.
Shaw
, A. N.
Sekar Iyengar
, and Md.
Nurujjaman
, “Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field
,” Phys. Plasmas
22
(12
), 122301
(2015
). 38.
J.
Shen
, “Canard limit cycles and global dynamics in a singularly perturbed predator–prey system with non-monotonic functional response
,” Nonlinear Anal. Real World Appl.
31
, 146
–165
(2016
). 39.
L.
Ryashko
and E.
Slepukhina
, “Noise-induced toroidal excitability in neuron model
,” Commun. Nonlinear Sci. Numer. Simul.
82
, 105071
(2020
). 40.
R. B.
Sowers
, “Random perturbations of canards
,” J. Theor. Probab.
21
, 824
–889
(2008
). 41.
N.
Berglund
, B.
Gentz
, and C.
Kuehn
, “Hunting French ducks in a noisy environment
,” J. Differ. Equ.
252
(9
), 4786
–4841
(2012
). 42.
J. D.
Touboul
, M.
Krupa
, and M.
Desroches
, “Noise-induced canard and mixed-mode oscillations in large-scale stochastic networks
,” SIAM J. Appl. Math.
75
(5
), 2024
–2049
(2015
). 43.
I.
Bashkirtseva
, V.
Nasyrova
, and L.
Ryashko
, “Analysis of noise effects in a map-based neuron model with canard-type quasiperiodic oscillations
,” Commun. Nonlinear Sci. Numer. Simul.
63
, 261
–270
(2018
). 44.
I.
Bashkirtseva
and L.
Ryashko
, “Noise-induced shifts in the population model with a weak Allee effect
,” Physica A
491
, 28
–36
(2018
). 45.
I.
Bashkirtseva
, L.
Ryashko
, and S.
Zaitseva
, “Analysis of nonlinear stochastic oscillations in the biochemical Goldbeter model
,” Commun. Nonlinear Sci. Numer. Simul.
73
, 165
–176
(2019
). 46.
W. E.
Schiesser
, The Numerical Method of Lines: Integration of Partial Differential Equations
(Academic Press
, San Diego
, 1991
).47.
M.
Desroches
, M.
Krupa
, and S.
Rodrigues
, “Inflection, canards and excitability threshold in neuronal models
,” J. Math. Biol.
67
, 989
–1017
(2013
). © 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.