We generalize the study of the noisy Kuramoto model, considered on a network of two interacting communities, to the case where the interaction strengths within and across communities are taken to be different in general. Using a geometric interpretation of the self-consistency equations developed in Paper I of this series as well as perturbation arguments, we are able to identify all solution boundaries in the phase diagram. This allows us to completely classify the phase diagram in the four-dimensional parameter space and identify all possible bifurcation points. Furthermore, we analyze the asymptotic behavior of the solution boundaries. To illustrate these results and the rich behavior of the model, we present phase diagrams for selected regions of the parameter space.

1
S.
Achterhof
and
J. M.
Meylahn
, “Two-community noisy Kuramoto model with general interaction strengths. I,” arXiv:2007.11303 [math-ph] (2020).
2
L.
Bertini
,
G.
Giacomin
, and
K.
Pakdaman
, “
Dynamical aspects of mean field plane rotators and the Kuramoto model
,”
J. Stat. Phys.
138
,
270
290
(
2010
).
3
D.
Garlaschelli
,
F.
den Hollander
,
J.
Meylahn
, and
B.
Zeegers
, “
Synchronization of phase oscillators on the hierarchical lattice
,”
J. Stat. Phys.
174
,
188
218
(
2019
).
4
D. S.
Goldobin
,
I. V.
Tyulkina
,
L. S.
Klimenko
, and
A.
Pikovsky
, “
Collective mode reductions for populations of coupled noisy oscillators
,”
Chaos
28
,
101101
(
2018
).
5
H.
Hong
and
S. H.
Strogatz
, “
Conformists and contrarians in a Kuramoto model with identical natural frequencies
,”
Phys. Rev. E
84
,
046202
(
2011
).
6
H.
Hong
and
S. H.
Strogatz
, “
Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators
,”
Phys. Rev. Lett.
106
,
054102
(
2011
).
7
H.
Hong
and
S. H.
Strogatz
, “
Mean-field behavior in coupled oscillators with attractive and repulsive interactions
,”
Phys. Rev. E
85
,
056210
(
2012
).
8
T.
Kotwal
,
X.
Jiang
, and
D. M.
Abrams
, “
Connecting the Kuramoto model and the chimera state
,”
Phys. Rev. Lett.
119
,
264101
(
2017
).
9
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39 (Springer, Berlin, 1975), pp. 420–422.
10
E.
Luçon
, “Oscillateurs couplés, désordre et renormalization,” Ph.D. thesis (Université Pierre et Marie Curie-Paris VI, 2012).
11
J. M.
Meylahn
, “
Two-community noisy Kuramoto model
,”
Nonlinearity
33
(
4
),
1847
1880
(
2020
).
12
A.
Pluchino
,
V.
Latora
, and
A.
Rapisarda
, “
Changing opinions in a changing world: A new perspective in sociophysics
,”
Int. J. Mod. Phys. C
16
(
4
),
515
531
(
2005
).
13
J. H. T.
Rohling
and
J. M.
Meylahn
, “
Two-community noisy Kuramoto model suggests mechanism for splitting in the suprachiasmatic nucleus
,”
J. Biol. Rhythms
35
(
2
),
158
166
(
2019
).
14
H.
Sakaguchi
, “
Cooperative phenomena in coupled oscillators systems under external fields
,”
Prog. Theor. Phys.
79
,
39
46
(
1988
).
15
B.
Sonnenschein
,
T. K. D.
M. Peron
,
F. A.
Rodrigues
,
J.
Kurths
, and
L.
Schimansky-Geier
, “
Collective dynamics in two populations of noisy oscillators with asymmetric interactions
,”
Phys. Rev. E
91
,
062910
(
2015
).
16
B.
Sonnenschein
and
L.
Schimansky-Geier
, “
Approximate solution to the stochastic Kuramoto model
,”
Phys. Rev. E
88
,
052111
(
2013
).
17
I. V.
Tyulkina
,
D. S.
Goldobin
,
L. S.
Klimenko
, and
A.
Pikovsky
, “
Dynamics of noisy oscillator populations beyond the Ott–Antonsen ansatz
,”
Phys. Rev. Lett.
120
,
264101
(
2018
).
18
R.
Xiao
,
J.
Li
, and
T.
Chen
, “
Modeling and intelligent optimization of social collective behavior with online public opinion synchronization
,”
Int. J. Mach. Learn. Cybern.
10
,
1979
1996
(
2019
).
You do not currently have access to this content.