This work addresses the problem of pattern analysis in networks consisting of delay-coupled identical Lur’e systems. We study a class of nonlinear systems, which, being isolated, are globally asymptotically stable. Assembling such systems into a network via time-delayed coupling may result in the change of network equilibrium stability under parameter variation in the coupling. In this work, we focus on cases where a Hopf bifurcation causes the change of stability of the network equilibrium and leads to the occurrence of oscillatory modes (patterns). Moreover, some of these patterns can co-exist for the same set of coupling parameters, which makes the analysis by means of common methods, such as the Lyapunov–Krasovskii method or the analysis of Poincaré maps, cumbersome. A numerically efficient algorithm, aiming at the computation of the oscillatory patterns occurring in such networks, is presented. Moreover, we show that our approach is able to deal with co-existing patterns, and both stable and unstable regimes can be simultaneously computed, which gives deep insight into the network dynamics. In order to illustrate the efficiency of the method, we present two examples in which the instability of the network equilibria is caused by a subcritical and a supercritical Hopf bifurcation. In addition, a bifurcation analysis of the subcritical case is performed in order to further explain the occurrence of the detected coexisting modes.

1.
K.
Rogov
,
A.
Pogromsky
,
E.
Steur
,
W.
Michiels
, and
H.
Nijmeijer
, “
Pattern analysis in networks of diffusively coupled Lur’e systems
,”
Int. J. Bifurcation Chaos
29
,
1950200
(
2019
).
2.
S.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Hyperion Press
,
2003
).
3.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, Synchronization, Cambridge Nonlinear Science Series (Cambridge University Press, 2001).
4.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1998
).
5.
M.
Golubitsky
and
I.
Stewart
, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, Progress in Mathematics (Birkhäuser, Basel, 2012).
6.
J.
Hale
,
Theory of Functional Differential Equations
(
Springer-Verlag
,
New York
,
1977
). p.
366
.
7.
T.
Faria
, “
Normal forms for periodic retarded functional differential equations
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
127
,
21
46
(
1997
).
8.
N. M.
Golubitsky
and
M. I.
Stewart
, “
Some curious phenomena in coupled cell networks
,”
J. Nonlinear Sci.
14
,
207
236
(
2004
).
9.
A.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. London B: Biol. Sci.
237
,
37
72
(
1952
).
10.
S.
Smale
, “A mathematical model of two cells via Turing’s equation,” in The Hopf Bifurcation and Its Applications (Springer, New York, 1976), pp. 354–367.
11.
E.
Tomberg
and
V.
Yakubovich
, “
On one problem of Smale
,”
Siberian Math. J.
4
,
771
774
(
2000
).
12.
A.
Pogromsky
,
T.
Glad
, and
H.
Nijmeijer
, “
On diffusion driven oscillations in coupled dynamical systems
,”
Int. J. Bifurcation Chaos
09
,
629
644
(
1999
).
13.
A.
Pogromsky
and
H.
Nijmeijer
, “
Cooperative oscillatory behavior of mutually coupled dynamical systems
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
48
,
152
162
(
2001
).
14.
J. S.
Climaco
and
A.
Saa
, “
Optimal global synchronization of partially forced Kuramoto oscillators
,”
Chaos
29
,
073115
(
2019
).
15.
A.
Pogromsky
,
N.
Kuznetsov
, and
G.
Leonov
, “Pattern generation in diffusive networks: How do those brainless centipedes walk?,” in Proceedings of the IEEE Conference on Decision and Control (IEEE, 2011), pp. 7849–7854.
16.
L.
Su
,
Y.
Wei
,
W.
Michiels
,
E.
Steur
, and
H.
Nijmeijer
, “
Robust partial synchronization of delay-coupled networks
,”
Chaos
30
,
013126
(
2020
).
17.
M.
Golubitsky
,
I.
Stewart
,
P.-L.
Buono
, and
J. J.
Collins
, “
Symmetry in locomotor central pattern generators and animal gaits
,”
Nature
401
,
693
695
(
1999
).
18.
T.
Iwasaki
, “
Multivariable harmonic balance for central pattern generators
,”
Automatica
44
,
3061
3069
(
2008
).
19.
J.
Hale
, “
Diffusive coupling, dissipation, and synchronization
,”
J. Dyn. Differ. Equ.
9
,
1
52
(
1997
).
20.
M.
Dhamala
,
V. K.
Jirsa
, and
M.
Ding
, “
Enhancement of neural synchrony by time delay
,”
Phys. Rev. Lett.
92
,
074104
(
2004
).
21.
D. V.
Ramana Reddy
,
A.
Sen
, and
G. L.
Johnston
, “
Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators
,”
Phys. Rev. Lett.
85
,
3381
3384
(
2000
).
22.
R.
Sipahi
,
S.
Niculescu
,
C. T.
Abdallah
,
W.
Michiels
, and
K.
Gu
, “
Stability and stabilization of systems with time delay
,”
IEEE Control Syst. Mag.
31
,
38
65
(
2011
).
23.
E.
Steur
and
A.
Pogromsky
, “Emergence of oscillations in networks of time-delay coupled inert systems,” in Nonlinear Systems: Techniques for Dynamical Analysis and Control, edited by N. van de Wouw, E. Lefeber, and I. Lopez Arteaga (Springer International Publishing, Cham, 2017), pp. 137–154.
24.
H. K.
Khalil
,
Nonlinear Systems
(
Prentice-Hall
,
New Jersey
,
1996
).
25.
A.
Mees
and
A.
Bergen
, “
Describing functions revisited
,”
IEEE Trans. Automat. Control
20
,
473
478
(
1975
).
26.
D. J.
Allwright
, “
Harmonic balance and the Hopf bifurcation
,”
Math. Proc. Cambridge Philos. Soc.
82
,
453
467
(
1977
).
27.
W.
Michiels
and
H.
Nijmeijer
, “
Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria
,”
Chaos
19
,
033110
(
2009
).
28.
E.
Steur
and
H.
Nijmeijer
, “
Synchronization in networks of diffusively time-delay coupled (semi-)passive systems
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
58
,
1358
1371
(
2011
).
29.
S.
Gershgorin
, “
Uber die abgrenzung der eigenwerte einer matrix
,”
Bull. Acad. Sci. USSR Classe Sci. Math.
6
,
749
754
(
1931
).
30.
V.
Yakubovich
, “
Frequency conditions for auto-oscillations in nonlinear systems with one stationary nonlinearity
,”
Siberian Math. J.
14
,
768
788
(
1973
).
31.
J.
Hale
and
S.
Verduyn Lunel
,
Introduction to Functional Differential Equations
(
Springer-Verlag
,
1993
).
32.
T.
Burton
, “Limit sets, periodicity, and stability,” in Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Mathematics in Science and Engineering Vol. 178, edited by T. Burton (Elsevier, 1985), pp. 197–324.
33.
E.
Steur
,
T.
Oguchi
,
C.
van Leeuwen
, and
H.
Nijmeijer
, “
Partial synchronization in diffusively time-delay coupled oscillator networks
,”
Chaos
22
,
043144
(
2012
).
34.
J.
Kato
, “
An autonomous system whose solutions are uniformly ultimately bounded but not uniformly bounded
,”
Tohoku Math. J.
32
,
499
504
(
1980
).
35.
W.
Michiels
and
S.
Niculescu
,
Stability and Stabilization of Time-Delay Systems
(
Society for Industrial and Applied Mathematics
,
2007
).
36.
M.
Han
and
P.
Yu
, “Hopf bifurcation and normal form computation,” in Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles (Springer, London, 2012), Vol. 181, pp. 7–58.
37.
E.
Jarlebring
, “
Critical delays and polynomial eigenvalue problems
,”
J. Comput. Appl. Math.
224
,
296
306
(
2009
).
38.
J.
Sieber
,
K.
Engelborghs
,
T.
Luzyanina
,
G.
Samaey
, and
D.
Roose
, “Dde-biftool manual—Bifurcation analysis of delay differential equations,” 2014, see http://ddebiftool.sourceforge.net/doc/manual.pdf.
39.
M.
Golubitsky
and
I.
Stewart
, “
Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics
,”
Chaos
26
,
094803
(
2016
).
40.
M.
Golubitsky
,
L.
Matamba Messi
, and
L. E.
Spardy
, “
Symmetry types and phase-shift synchrony in networks
,”
Physica D
320
,
9
18
(
2016
).
41.
MATLAB
,
MATLAB Optimization Toolbox (R2017a)
(
The MathWorks Inc.
,
Natick, MA
,
2017
).
42.
R. H.
Byrd
,
J. C.
Gilbert
, and
J.
Nocedal
, “
A trust region method based on interior point techniques for nonlinear programming
,”
Math. Program.
89
,
149
185
(
2000
).
43.
Z.
Ugray
,
L.
Lasdon
,
J.
Plummer
,
F.
Glover
,
J.
Kelly
, and
R.
Martí
, “
Scatter search and local NLP solvers: A multistart framework for global optimization
,”
INFORMS J. Comput.
19
,
328
340
(
2007
).
44.
Z.
Wu
and
W.
Michiels
, “
Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method
,”
J. Comput. Appl. Math.
236
,
2499
2514
(
2012
).
45.
D.
Breda
,
S.
Maset
, and
R.
Vermiglio
, “
Pseudospectral differencing methods for characteristic roots of delay differential equations
,”
SIAM J. Sci. Comput.
27
,
482
495
(
2005
).
46.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
47.
E.
Steur
,
I.
Tyukin
, and
H.
Nijmeijer
, “
Semi-passivity and synchronization of diffusively coupled neuronal oscillators
,”
Physica D
238
,
2119
2128
(
2009
).
48.
K.
Rogov
,
A.
Pogromsky
,
E.
Steur
,
W.
Michiels
, and
H.
Nijmeijer
, “Pattern analysis in networks of delayed coupled nonlinear systems,” in 2020 European Control Conference (ECC) (Institute of Electrical and Electronics Engineers, 2020).
You do not currently have access to this content.