The stable operation of a turbulent combustor is not completely silent; instead, there is a background of small amplitude aperiodic acoustic fluctuations known as combustion noise. Pressure fluctuations during this state of combustion noise are multifractal due to the presence of multiple temporal scales that contribute to its dynamics. However, existing models are unable to capture the multifractality in the pressure fluctuations. We conjecture an underlying fractional dynamics for the thermoacoustic system and obtain a fractional-order model for pressure fluctuations. The data from this model has remarkable visual similarity to the experimental data and also has a wide multifractal spectrum during the state of combustion noise. Quantitative similarity with the experimental data in terms of the Hurst exponent and the multifractal spectrum is observed during the state of combustion noise. This model is also able to produce pressure fluctuations that are qualitatively similar to the experimental data acquired during intermittency and thermoacoustic instability. Furthermore, we argue that the fractional dynamics vanish as we approach the state of thermoacoustic instability.

1.
T.
Lieuwen
,
Unsteady Combustor Physics
(
Cambridge University Press
,
2012
).
2.
R. I.
Sujith
and
V. R.
Unni
, “
Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors
,”
Phys. Fluids
32
,
061401
(
2020
).
3.
V.
Nair
and
R. I.
Sujith
, “
Multifractality in combustion noise: Predicting an impending combustion instability
,”
J. Fluid Mech.
747
,
635
655
(
2014
).
4.
V.
Nair
,
G.
Thampi
,
S.
Karuppusamy
,
S.
Gopalan
, and
R.
Sujith
, “
Loss of chaos in combustion noise as a precursor of impending combustion instability
,”
Int. J. Spray Combust. Dyn.
5
,
273
290
(
2013
).
5.
J.
Tony
,
E.
Gopalakrishnan
,
E.
Sreelekha
, and
R. I.
Sujith
, “
Detecting deterministic nature of pressure measurements from a turbulent combustor
,”
Phys. Rev. E
92
,
062902
(
2015
).
6.
M.
Kamin
,
J.
Mathew
, and
R. I.
Sujith
, “
A numerical study of an acoustic–hydrodynamic system exhibiting an intermittent prelude to instability
,”
Int. J. Aeroacoust.
18
,
536
553
(
2019
).
7.
J. W.
Kantelhardt
,
S. A.
Zschiegner
,
E.
Koscielny-Bunde
,
S.
Havlin
,
A.
Bunde
, and
H.
Stanley
, “
Multifractal detrended fluctuation analysis of nonstationary time series
,”
Physica A
316
,
87
114
(
2002
).
8.
N.
Noiray
, “
Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in turbulent combustors
,”
J. Eng. Gas Turbine. Power
139
,
041503
(
2017
).
9.
A.
Seshadri
,
V.
Nair
, and
R. I.
Sujith
, “
A reduced-order deterministic model describing an intermittency route to combustion instability
,”
Combust. Theory Modell.
20
,
441
456
(
2016
).
10.
B. J.
West
, “
Fractal physiology and the fractional calculus: A perspective
,”
Front. Physiol.
1
,
12
(
2010
).
11.
L. F.
Richardson
, “
Atmospheric diffusion shown on a distance-neighbour graph
,”
Proc. R. Soc. Lond. Ser. A
110
,
709
737
(
1926
).
12.
R.
Metzler
,
J.-H.
Jeon
,
A.
Cherstvy
, and
E.
Barkai
, “
Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
,
24128
24164
(
2014
).
13.
V. V.
Kulish
and
J. L.
Lage
, “
Application of fractional calculus to fluid mechanics
,”
J. Fluids Eng.
124
,
803
806
(
2002
).
14.
D.
del Castillo-Negrete
,
B.
Carreras
, and
V.
Lynch
, “
Fractional diffusion in plasma turbulence
,”
Phys. Plasmas
11
,
3854
3864
(
2004
).
15.
Y.
Zhou
and
L.
Peng
, “
On the time-fractional Navier–Stokes equations
,”
Comput. Math. Appl.
73
,
874
891
(
2017
).
16.
G.
Boffetta
and
I.
Sokolov
, “
Relative dispersion in fully developed turbulence: The Richardson’s law and intermittency corrections
,”
Phys. Rev. Lett.
88
,
094501
(
2002
).
17.
Y.
Xu
,
R.
Gu
,
H.
Zhang
,
W.
Xu
, and
J.
Duan
, “
Stochastic bifurcations in a bistable Duffing-van der Pol oscillator with colored noise
,”
Phys. Rev. E
83
,
056215
(
2011
).
18.
X.
Zhang
,
Y.
Xu
,
Q.
Liu
, and
J.
Kurths
, “
Rate-dependent tipping-delay phenomenon in a thermoacoustic system with colored noise
,”
Sci. China Technol. Sci.
63
,
2315
2327
(
2020
).
19.
R.
Mei
,
Y.
Xu
, and
J.
Kurths
, “
Transport and escape in a deformable channel driven by fractional Gaussian noise
,”
Phys. Rev. E
100
,
022114
(
2019
).
20.
Y.
Xu
,
X.
Liu
,
Y.
Li
, and
R.
Metzler
, “
Heterogeneous diffusion processes and nonergodicity with Gaussian colored noise in layered diffusivity landscapes
,”
Phys. Rev. E
102
,
062106
(
2020
).
21.
I.
Podlubny
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
(
Elsevier
,
1998
).
22.
K.
Oldham
and
J.
Spanier
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
(
Elsevier
,
1974
).
23.
R.
Gorenflo
and
F.
Mainardi
, “Fractional calculus: Integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics (Springer-Verlag, Wien, 1997), pp. 223–276.
24.
J. H.
Schulz
,
E.
Barkai
, and
R.
Metzler
, “
Aging renewal theory and application to random walks
,”
Phys. Rev. X
4
,
011028
(
2014
).
25.
K.
Balasubramanian
and
R. I.
Sujith
, “
Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity
,”
Phys. Fluids
20
,
044103
(
2008
).
26.
J.-S.
Duan
, “
The periodic solution of fractional oscillation equation with periodic input
,”
Adv. Math. Phys.
2013
,
869484
.
27.
A.
Stanislavsky
, “
Fractional oscillator
,”
Phys. Rev. E
70
,
051103
(
2004
).
28.
R. S.
Barbosa
,
J. T.
Machado
,
B. M.
Vinagre
, and
A. J.
Calderon
, “
Analysis of the van der Pol oscillator containing derivatives of fractional order
,”
J. Vib. Control
13
,
1291
1301
(
2007
).
29.
E.
Periera
,
C. A.
Monje
,
B. M.
Vinagre
, and
F.
Gordillho
, “Matlab toolbox for the analysis of fractional order systems with hard nonlinearities,” in Proceedings of First IFAC Workshop on Fractional Differentiation and Its Application (FDA’04), Bordeaux, France (2004).
30.
A.
Al-rabtah
,
V. S.
Ertürk
, and
S.
Momani
, “
Solutions of a fractional oscillator by using differential transform method
,”
Comput. Math. Appl.
59
,
1356
1362
(
2010
).
31.
F.
Mainardi
, “
The time fractional diffusion-wave equation
,”
Radiophys. Quantum Electron.
38
,
13
24
(
1995
).
32.
Y.
Luchko
, “
Fractional wave equation and damped waves
,”
J. Math. Phys.
54
,
031505
(
2013
).
33.
W. R.
Schneider
and
W.
Wyss
, “
Fractional diffusion and wave equations
,”
J. Math. Phys.
30
,
134
144
(
1989
).
34.
K.
Diethelm
,
D.
Baleanu
, and
E.
Scalas
,
Fractional Calculus: Models and Numerical Methods
(
World Scientific
,
2012
).
35.
V.
Nair
,
G.
Thampi
, and
R. I.
Sujith
, “
Intermittency route to thermoacoustic instability in turbulent combustors
,”
J. Fluid Mech.
756
,
470
487
(
2014
).
You do not currently have access to this content.