We study the macroscopic dynamics of large networks of excitable type 1 neurons composed of two populations interacting with disparate but symmetric intra- and inter-population coupling strengths. This nonuniform coupling scheme facilitates symmetric equilibria, where both populations display identical firing activity, characterized by either quiescent or spiking behavior, or asymmetric equilibria, where the firing activity of one population exhibits quiescent but the other exhibits spiking behavior. Oscillations in the firing rate are possible if neurons emit pulses with non-zero width but are otherwise quenched. Here, we explore how collective oscillations emerge for two statistically identical neuron populations in the limit of an infinite number of neurons. A detailed analysis reveals how collective oscillations are born and destroyed in various bifurcation scenarios and how they are organized around higher codimension bifurcation points. Since both symmetric and asymmetric equilibria display bistable behavior, a large configuration space with steady and oscillatory behavior is available. Switching between configurations of neural activity is relevant in functional processes such as working memory and the onset of collective oscillations in motor control.

1.
G. B.
Ermentrout
and
N.
Kopell
, “
Parabolic bursting in an excitable system coupled with a slow oscillation
,”
SIAM J. Appl. Math.
46
(
2
),
233
253
(
1986
).
2.
P. E.
Latham
,
B. J.
Richmond
,
P. G.
Nelson
, and
S.
Nirenberg
, “
Intrinsic dynamics in neuronal networks. I. Theory
,”
J. Neurophysiol.
83
(
2
),
808
827
(
2000
).
3.
D.
Hansel
and
G.
Mato
, “
Existence and stability of persistent states in large neuronal networks
,”
Phys. Rev. Lett.
86
(
18
),
4175
4178
(
2001
).
4.
W.
Gerstner
,
W. M.
Kistler
,
R.
Naud
, and
L.
Paninski
,
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
(
Cambridge University Press
,
2014
).
5.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
(
3
),
037113
(
2008
).
6.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
, “
Macroscopic description for networks of spiking neurons
,”
Phys. Rev. X
5
(
2
),
021028
(
2015
).
7.
T. B.
Luke
,
E.
Barreto
, and
P.
So
, “
Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons
,”
Neural Comput.
25
,
3207
3234
(
2013
).
8.
C.
Bick
,
C.
Laing
,
M.
Goodfellow
, and
E. A.
Martens
, “
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review
,”
J. Math. Neurosci.
10
,
9
(
2020
).
9.
Á.
Byrne
,
D.
Avitabile
, and
S.
Coombes
, “
Next-generation neural field model: The evolution of synchrony within patterns and waves
,”
Phys. Rev. E
99
,
012313
(
2019
).
10.
E.
Marder
and
D.
Bucher
, “
Central pattern generators and the control of rythmic movements
,”
Curr. Biol.
11
,
R986
R996
(
2001
).
11.
J. C.
Smith
,
H. H.
Ellenberger
,
K.
Ballanyi
,
D. W.
Richter
, and
J. L.
Feldman
, “
Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals
,”
Science
254
(
5032
),
726
729
(
1991
).
12.
G.
Buzsáki
and
X.-J.
Wang
, “
Mechanisms of gamma oscillations
,”
Annu. Rev. Neurosci.
35
(
1
),
203
225
(
2012
).
13.
E. T.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
(
3
),
186
198
(
2009
).
14.
D.
Meunier
,
R.
Lambiotte
, and
E. T.
Bullmore
, “
Modular and hierarchically modular organization of brain networks
,”
Front. Neurosci.
4
,
200
(
2010
).
15.
K. D.
Harris
, “
Neural signatures of cell assembly organization
,”
Nat. Rev. Neurosci.
6
(
5
),
399
407
(
2005
).
16.
C. W.
Lynn
and
D. S.
Bassett
, “
The physics of brain network structure, function and control
,”
Nat. Rev. Phys.
1
,
318
332
(
2019
).
17.
L.
Glass
, “
Synchronization and rhythmic processes in physiology
,”
Nature
410
,
277
284
(
2001
).
18.
P. J.
Uhlhaas
and
W.
Singer
, “
Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology
,”
Neuron
52
(
1
),
155
168
(
2006
).
19.
J.
Fell
and
N.
Axmacher
, “
The role of phase synchronization in memory processes
,”
Nat. Rev. Neurosci.
12
(
2
),
105
118
(
2011
).
20.
P.
Fries
, “
Neuronal gamma-band synchronization as a fundamental process in cortical computation
,”
Annu. Rev. Neurosci.
32
,
209
224
(
2009
).
21.
X. J.
Wang
, “
Neurophysiological and computational principles of cortical rhythms in cognition
,”
Physiol. Rev.
90
(
3
),
1195
1268
(
2010
).
22.
W.
Singer
and
C. M.
Gray
, “
Visual feature integration and the temporal correlation hypothesis
,”
Annu. Rev. Neurosci.
18
,
555
586
(
1995
).
23.
P.
Fries
, “
A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence
,”
Trends Cogn. Sci.
9
(
10
),
474
480
(
2005
).
24.
M. I.
Rabinovich
,
V. S.
Afraimovich
,
C.
Bick
, and
P.
Varona
, “
Information flow dynamics in the brain
,”
Phys. Life Rev.
9
(
1
),
51
73
(
2012
).
25.
C.
Kirst
,
M.
Timme
, and
D.
Battaglia
, “
Dynamic information routing in complex networks
,”
Nat. Commun.
7
,
11061
(
2016
).
26.
N.
Deschle
,
A.
Daffertshofer
,
D.
Battaglia
, and
E. A.
Martens
, “
Directed flow of information in chimera states
,”
Front. Appl. Math. Stat.
5
(
28
),
R102
(
2019
).
27.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
,
084103
(
2008
).
28.
E. A.
Martens
,
M. J.
Panaggio
, and
D. M.
Abrams
, “
Basins of attraction for chimera states
,”
New J. Phys.
18
,
022002
(
2016
).
29.
E. A.
Martens
, “
Bistable chimera attractors on a triangular network of oscillator populations
,”
Phys. Rev. E
82
(
1
),
016216
(
2010
).
30.
E. A.
Martens
,
C.
Bick
, and
M. J.
Panaggio
, “
Chimera states in two populations with heterogeneous phase-lag
,”
Chaos
26
(
9
),
094819
(
2016
).
31.
C. R.
Laing
, “
The dynamics of chimera states in heterogeneous Kuramoto networks
,”
Physica D
238
(
16
),
1569
1588
(
2009
).
32.
C. R.
Laing
,
K.
Rajendran
, and
I. G.
Kevrekidis
, “
Chimeras in random non-complete networks of phase oscillators
,”
Chaos
22
(
1
),
013132
(
2012
).
33.
E.
Schöll
, “
Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics
,”
Eur. Phys. J. Spec. Top.
225
(
6-7
),
891
919
(
2016
).
34.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
(
3
),
R67
(
2015
).
35.
C. R.
Laing
, “Phase oscillator network models of brain dynamics,” in Computational Models of Brain and Behavior, edited by A. A. Moustafa (Wiley-Blackwell, 2017), Chap. 37, pp. 505–518.
36.
T. B.
Luke
,
E.
Barreto
, and
P.
So
, “
Macroscopic complexity from an autonomous network of networks of theta neurons
,”
Front. Comput. Neurosci.
8
,
145
(
2014
).
37.
H.
Schmidt
,
D.
Avitabile
,
E.
Montbrió
, and
A.
Roxin
, “
Network mechanisms underlying the role of oscillations in cognitive tasks
,”
PLoS Comput. Biol.
14
(
9
),
e1006430
(
2018
).
38.
M.
Yamakou
,
P. G.
Hjorth
, and
E. A.
Martens
, “Optimal self-induced stochastic resonance in multiplex neural networks: Electrical versus chemical synapses,”
Front. Comp. Neuroscience
14
,
62
(
2002
).
39.
G.
Weerasinghe
,
B.
Duchet
,
H.
Cagnan
,
P. R.
Brown
,
C.
Bick
, and
R.
Bogacz
, “Predicting the effects of deep brain stimulation using a reduced coupled oscillator model,”
PLoS Comp. Biology
15
(8) (
2019
).
40.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
(
3-4
),
197
253
(
1994
).
41.
C. R.
Laing
, “
The dynamics of networks of identical theta neurons
,”
J. Math. Neurosci.
8
,
4
(
2018
).
42.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
(
1
),
1
24
(
1972
).
43.
S.
Amari
, “
Dynamics of pattern formation in lateral-inhibition type neural fields
,”
Biol. Cybern.
27
(
2
),
77
87
(
1977
).
44.
L.
Lin
,
E.
Barreto
, and
P.
So
, “
Synaptic diversity suppresses complex collective behavior in networks of theta neurons
,”
Front. Comput. Neurosci.
14
,
44
(
2020
).
45.
G.
Buzsáki
and
B. O.
Watson
, “
Brain rhythms and neural syntax: Implications for efficient coding of cognitive content and neuropsychiatric disease
,”
Dialogues Clin. Neurosci.
14
,
345
367
(
2012
).
46.
P.
Fries
,
D.
Nikolić
, and
W.
Singer
, “
The gamma cycle
,”
Trends Neurosci.
30
(
7
),
309
316
(
2007
).
47.
S.
Keeley
,
A.
Fenton
, and
J.
Rinzel
, “
Modeling fast and slow gamma oscillations with interneurons of different subtype
,”
J. Neurophysiol.
117
(
3
),
950
965
(
2017
).
48.
S.
Keeley
,
A.
Byrne
,
A.
Fenton
, and
J.
Rinzel
, “
Firing rate models for gamma oscillations
,”
J. Neurophysiol.
121
(
6
),
2181
2190
(
2019
).
49.
M.
Segneri
,
H.
Bi
,
S.
Olmi
, and
A.
Torcini
, “
Theta-nested gamma oscillations in next generation neural mass models
,”
Front. Comput. Neurosci.
14
,
7373
(
2020
).
50.
F.
Devalle
,
A.
Roxin
, and
E.
Montbrió
, “
Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks
,”
PLoS Comput. Biol.
13
(
12
),
e1005881
(
2017
).
51.
P.
So
,
T. B.
Luke
, and
E.
Barreto
, “
Networks of theta neurons with time-varying excitability: Macroscopic chaos, multistability, and final-state uncertainty
,”
Physica D
267
,
16
26
(
2013
).
52.
A.
Dhooge
,
W.
Govaerts
,
Yu. A.
Kuznetsov
,
H. G. E.
Meijer
, and
B.
Sautois
, “
New features of the software MatCont for bifurcation analysis of dynamical systems
,”
Math. Comput. Model. Dyn. Syst.
14
,
147
175
(
2008
).
53.
B.
Ermentrout
, “
Ermentrout-Kopell canonical model
,”
Scholarpedia
3
(
3
),
1398
(
2008
).
54.
J. T.
Ariaratnam
and
S. H.
Strogatz
, “
Phase diagram for the Winfree model of coupled nonlinear oscillators
,”
Phys. Rev. Lett.
86
(
19
),
4281
(
2001
).
55.
G. B.
Ermentrout
and
D. H.
Terman
, Mathematical Foundations of Neuroscience, Interdisciplinary Applied Mathematics Vol. 35 (Springer, New York, 2010).
56.
N.
Brunel
and
P. E.
Latham
, “
Firing rate of the noisy quadratic integrate-and-fire neuron
,”
Neural Comput.
15
(
10
),
2281
2306
(
2003
).
57.
I.
Ratas
and
K.
Pyragas
, “
Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons
,”
Phys. Rev. E
94
(
3
),
032215
(
2016
).
58.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer-Verlag
,
New York
,
1998
).
59.
J.
Guckenheimer
and
Y.
Kuznetsov
, “
Bautin bifurcation
,”
Scholarpedia
2
(
5
),
1853
(
2007
).
60.
J.
Guckenheimer
and
Y.
Kuznetsov
, “
Fold-Hopf bifurcation
,”
Scholarpedia
2
(
10
),
1855
(
2007
).
61.
C.
Bick
and
E. A.
Martens
, “
Controlling chimeras
,”
New J. Phys.
17
,
033030
(
2015
).
62.
D.
Călugăru
,
J. F.
Totz
,
E. A.
Martens
, and
H.
Engel
, “
First-order synchronization transition in a large population of strongly coupled relaxation oscillators
,”
Sci. Adv.
6
,
eabb2637
(
2020
).
63.
C.
Bick
,
M. J.
Panaggio
, and
E. A.
Martens
, “
Chaos in Kuramoto oscillator networks
,”
Chaos
28
,
071102
(
2018
).
64.
I.
Ratas
and
K.
Pyragas
, “
Macroscopic oscillations of a quadratic integrate-and-fire neuron network with global distributed-delay coupling
,”
Phys. Rev. E
98
(
5
),
052224
(
2018
).
65.
A.
Ceni
,
S.
Olmi
,
A.
Torcini
, and
D.
Angulo-Garcia
, “
Cross frequency coupling in next generation inhibitory neural mass models
,”
Chaos
30
(
5
),
053121
(
2020
).
66.
I.
Ratas
and
K.
Pyragas
, “
Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons
,”
Phys. Rev. E
96
(
4
),
042212
(
2017
).
67.
S.
Coombes
and
Á.
Byrne
, “Next generation neural mass models,” in Nonlinear Dynamics in Computational Neuroscience (Springer, 2019), pp. 1–16.
68.
M.
Shanahan
, “
Metastable chimera states in community-structured oscillator networks
,”
Chaos
20
(
1
),
013108
(
2010
).
69.
M.
Wildie
and
M.
Shanahan
, “
Metastability and chimera states in modular delay and pulse-coupled oscillator networks
,”
Chaos
22
(
4
),
043131
(
2012
).
You do not currently have access to this content.