We study the hyperchaos formation scenario in the modified Anishchenko–Astakhov generator. The scenario is connected with the existence of sequence of secondary torus bifurcations of resonant cycles preceding the hyperchaos emergence. This bifurcation cascade leads to the birth of the hierarchy of saddle-focus cycles with a two-dimensional unstable manifold as well as of saddle hyperchaotic sets resulting from the period-doubling cascades of unstable resonant cycles. Hyperchaos is born as a result of an inverse cascade of bifurcations of the emergence of discrete spiral Shilnikov attractors, accompanied by absorbing the cycles constituting this hierarchy.

1.
O.
Rossler
, “
An equation for hyperchaos
,”
Phys. Lett. A
71
,
155
157
(
1979
).
2.
T.
Kapitaniak
,
Y.
Maistrenko
, and
S.
Popovych
, “
Chaos-hyperchaos transition
,”
Phys. Rev. E
62
,
1972
(
2000
).
3.
T.
Kapitaniak
,
K.-E.
Thylwe
,
I.
Cohen
, and
J.
Wojewoda
, “
Chaos-hyperchaos transition
,”
Chaos, Solitons Fractals
5
,
2003
2011
(
1995
).
4.
S.
Yanchuk
and
T.
Kapitaniak
, “
Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems
,”
Phys. Rev. E
64
,
056235
(
2001
).
5.
M. A.
Harrison
and
Y.-C.
Lai
, “
Route to high-dimensional chaos
,”
Phys. Rev. E
59
,
R3799
(
1999
).
6.
S.
Nikolov
and
S.
Clodong
, “
Hyperchaos–chaos–hyperchaos transition in modified Rössler systems
,”
Chaos, Solitons Fractals
28
,
252
263
(
2006
).
7.
K.
Harikrishnan
,
R.
Misra
, and
G.
Ambika
, “
On the transition to hyperchaos and the structure of hyperchaotic attractors
,”
Eur. Phys. J. B
86
,
394
(
2013
).
8.
Q.
Li
,
S.
Tang
, and
X.-S.
Yang
, “
Hyperchaotic set in continuous chaos–hyperchaos transition
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
3718
3734
(
2014
).
9.
L.
Munteanu
,
C.
Brişan
,
V.
Chiroiu
,
D.
Dumitriu
, and
R.
Ioan
, “
Chaos–hyperchaos transition in a class of models governed by Sommerfeld effect
,”
Nonlinear Dyn.
78
,
1877
1889
(
2014
).
10.
L.
Shilnikov
, “Theory of bifurcations and turbulence. I,” in Methods of Qualitative Theory of Differential Equations (Gorky, 1986), pp. 150–165.
11.
L.
Shilnikov
, “Theory of bifurcations and turbulence. I,” in Selecta Mathematica Sovietica (Birkhäuser, Basel, 1991), Vol. 10, pp. 43–53.
12.
A.
Gonchenko
,
S.
Gonchenko
,
A.
Kazakov
, and
D.
Turaev
, “
Simple scenarios of onset of chaos in three-dimensional maps
,”
Int. J. Bifurcat. Chaos
24
,
1440005
(
2014
).
13.
A.
Gonchenko
,
S.
Gonchenko
, and
L.
Shilnikov
, “
Towards scenarios of chaos appearance in three-dimensional maps
,”
Russ. J. Nonlinear Dyn.
8
,
3
28
(
2012
).
14.
V.
Anishchenko
and
S.
Nikolaev
, “
Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations
,”
Tech. Phys. Lett.
31
,
853
855
(
2005
).
15.
V.
Anishchenko
,
S.
Nikolaev
, and
J.
Kurths
, “
Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus
,”
Phys. Rev. E
76
,
046216
(
2007
).
16.
B.
Ermentrout
,
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students
(
SIAM
,
2002
).
17.
V.
Afraimovich
and
L. P.
Shilnikov
, “
Invariant two-dimensional tori, their breakdown and stochasticity
,”
Am. Math. Soc. Transl.
149
,
201
212
(
1991
).
18.
V.
Anishchenko
,
T.
Letchford
, and
M.
Safonova
, “
Phase-locking effects and bifurcations of phase-locked and quasi-periodic oscillations in a nonautonomous oscillator
,”
Radiofizika
28
,
1112
1125
(
1985
) (in Russian).
19.
A.
Kipchatov
and
A.
Koronovsky
, “
Fine effects of self-similar behavior of a piecewise-linear system near the bifurcation line of torus birth
,”
Izv. VUZ Appl. Nonlinear Dyn.
5
,
17
23
(
1997
) (in Russian).
20.
N. V.
Stankevich
,
A.
Dvorak
,
V.
Astakhov
,
P.
Jaros
,
M.
Kapitaniak
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Chaos and hyperchaos in coupled antiphase driven Toda oscillators
,”
Regul. Chaotic Dyn.
23
,
120
126
(
2018
).
21.
A.
Kuznetsov
and
Y. V.
Sedova
, “
Coupled systems with hyperchaos and quasiperiodicity
,”
J. Appl. Nonlinear Dyn.
5
,
161
167
(
2016
).
22.
P. C.
Rech
, “
Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system
,”
Eur. Phys. J. B
90
,
251
(
2017
).
23.
T. F.
Fonzin
,
J.
Kengne
, and
F.
Pelap
, “
Dynamical analysis and multistability in autonomous hyperchaotic oscillator with experimental verification
,”
Nonlinear Dyn.
93
,
653
669
(
2018
).
24.
N.
Stankevich
,
A.
Kuznetsov
,
E.
Popova
, and
E.
Seleznev
, “
Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator
,”
Nonlinear Dyn.
97
,
2355
2370
(
2019
).
25.
N.
Stankevich
and
E.
Volkov
, “
Evolution of quasiperiodicity in quorum-sensing coupled identical repressilators
,”
Chaos
30
,
043122
(
2020
).
26.
I. R.
Garashchuk
,
D. I.
Sinelshchikov
,
A. O.
Kazakov
, and
N. A.
Kudryashov
, “
Hyperchaos and multistability in the model of two interacting microbubble contrast agents
,”
Chaos
29
,
063131
(
2019
).
27.
Y. A.
Kuznetsov
,
H. G.
Meijer
, and
L.
van Veen
, “
The fold-flip bifurcation
,”
Int. J. Bifurcat. Chaos
14
,
2253
2282
(
2004
).
You do not currently have access to this content.