An outstanding open problem in neuroscience is to understand how neural systems are capable of producing and sustaining complex spatiotemporal dynamics. Computational models that combine local dynamics with in vivo measurements of anatomical and functional connectivity can be used to test potential mechanisms underlying this complexity. We compared two conceptually different mechanisms: noise-driven switching between equilibrium solutions (modeled by coupled Stuart–Landau oscillators) and deterministic chaos (modeled by coupled Rossler oscillators). We found that both models struggled to simultaneously reproduce multiple observables computed from the empirical data. This issue was especially manifested in the case of noise-driven dynamics close to a bifurcation, which imposed overly strong constraints on the optimal model parameters. In contrast, the chaotic model could produce complex behavior over a range of parameters, thus being capable of capturing multiple observables at the same time with good performance. Our observations support the view of the brain as a non-equilibrium system able to produce endogenous variability. We presented a simple model capable of jointly reproducing functional connectivity computed at different temporal scales. Besides adding to our conceptual understanding of brain complexity, our results inform and constrain the future development of biophysically realistic large-scale models.

1.
Here, we employ the term large-scale as a synonym of brain-wide in reference to macroscopic brain activity spanning from a few centimeters up to the whole cortex.
2.
M. E.
Raichle
, “
The brain’s dark energy
,”
Science
314
,
1249
(
2006
).
3.
G.
Deco
,
V. K.
Jirsa
, and
A. R.
McIntosh
, “
Emerging concepts for the dynamical organization of resting-state activity in the brain
,”
Nat. Rev. Neurosci.
12
,
43
56
(
2011
).
4.
M. P.
Van Den Heuvel
and
H. E. H.
Pol
, “
Exploring the brain network: A review on resting-state fMRI functional connectivity
,”
Eur. Neuropsychopharmacol.
20
,
519
534
(
2010
).
5.
J. S.
Damoiseaux
,
S.
Rombouts
,
F.
Barkhof
,
P.
Scheltens
,
C. J.
Stam
,
S. M.
Smith
, and
C. F.
Beckmann
, “
Consistent resting-state networks across healthy subjects
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
13848
13853
(
2006
).
6.
S. M.
Smith
,
P. T.
Fox
,
K. L.
Miller
,
D. C.
Glahn
,
P. M.
Fox
,
C. E.
Mackay
,
N.
Filippini
,
K. E.
Watkins
,
R.
Toro
,
A. R.
Laird
et al., “
Correspondence of the brain’s functional architecture during activation and rest
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
13040
13045
(
2009
).
7.
G.
Deco
and
V. K.
Jirsa
, “
Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors
,”
J. Neurosci.
32
,
3366
3375
(
2012
).
8.
G.
Deco
,
V. K.
Jirsa
, and
A. R.
McIntosh
, “
Resting brains never rest: Computational insights into potential cognitive architectures
,”
Trends Neurosci.
36
,
268
274
(
2013
).
9.
F.
Cavanna
,
M. G.
Vilas
,
M.
Palmucci
, and
E.
Tagliazucchi
, “
Dynamic functional connectivity and brain metastability during altered states of consciousness
,”
NeuroImage
180
,
383
395
(
2018
).
10.
M. W.
Cole
,
T.
Ito
,
D. S.
Bassett
, and
D. H.
Schultz
, “
Activity flow over resting-state networks shapes cognitive task activations
,”
Nat. Neurosci.
19
,
1718
1726
(
2016
).
11.
R. M.
Hutchison
,
L. S.
Leung
,
S. M.
Mirsattari
,
J. S.
Gati
,
R. S.
Menon
, and
S.
Everling
, “
Resting-state networks in the macaque at 7 t
,”
NeuroImage
56
,
1546
1555
(
2011
).
12.
C. P.
Pawela
,
B. B.
Biswal
,
Y. R.
Cho
,
D. S.
Kao
,
R.
Li
,
S. R.
Jones
,
M. L.
Schulte
,
H. S.
Matloub
,
A. G.
Hudetz
, and
J. S.
Hyde
, “
Resting-state functional connectivity of the rat brain
,”
Magn. Reson. Med.
59
,
1021
1029
(
2008
).
13.
D.
Szabo
,
K.
Czeibert
,
Á.
Kettinger
,
M.
Gácsi
,
A.
Andics
,
Á.
Miklósi
, and
E.
Kubinyi
, “
Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks
,”
Sci. Rep.
9
,
15270
(
2019
).
14.
Z. C.
Zhou
,
A. P.
Salzwedel
,
S.
Radtke-Schuller
,
Y.
Li
,
K. K.
Sellers
,
J. H.
Gilmore
,
Y.-Y. I.
Shih
,
F.
Fröhlich
, and
W.
Gao
, “
Resting state network topology of the ferret brain
,”
NeuroImage
143
,
70
81
(
2016
).
15.
A. M.
Belcher
,
C. C.
Yen
,
H.
Stepp
,
H.
Gu
,
H.
Lu
,
Y.
Yang
,
A. C.
Silva
, and
E. A.
Stein
, “
Large-scale brain networks in the awake, truly resting marmoset monkey
,”
J. Neurosci.
33
,
16796
16804
(
2013
).
16.
F.
Sforazzini
,
A. J.
Schwarz
,
A.
Galbusera
,
A.
Bifone
, and
A.
Gozzi
, “
Distributed BOLD and CBV-weighted resting-state networks in the mouse brain
,”
NeuroImage
87
,
403
415
(
2014
).
17.
A.
Custo
,
D.
Van De Ville
,
W. M.
Wells
,
M. I.
Tomescu
,
D.
Brunet
, and
C. M.
Michel
, “
Electroencephalographic resting-state networks: Source localization of microstates
,”
Brain Connect.
7
,
671
682
(
2017
).
18.
M. J.
Brookes
,
M.
Woolrich
,
H.
Luckhoo
,
D.
Price
,
J. R.
Hale
,
M. C.
Stephenson
,
G. R.
Barnes
,
S. M.
Smith
, and
P. G.
Morris
, “
Investigating the electrophysiological basis of resting state networks using magnetoencephalography
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
16783
16788
(
2011
).
19.
C. D.
Hacker
,
A. Z.
Snyder
,
M.
Pahwa
,
M.
Corbetta
, and
E. C.
Leuthardt
, “
Frequency-specific electrophysiologic correlates of resting state fMRI networks
,”
NeuroImage
149
,
446
457
(
2017
).
20.
L.
Duan
,
Y.-J.
Zhang
, and
C.-Z.
Zhu
, “
Quantitative comparison of resting-state functional connectivity derived from fNIRs and fMRI: A simultaneous recording study
,”
NeuroImage
60
,
2008
2018
(
2012
).
21.
H.
Laufs
,
K.
Krakow
,
P.
Sterzer
,
E.
Eger
,
A.
Beyerle
,
A.
Salek-Haddadi
, and
A.
Kleinschmidt
, “
Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
11053
11058
(
2003
).
22.
D.
Mantini
,
M. G.
Perrucci
,
C.
Del Gratta
,
G. L.
Romani
, and
M.
Corbetta
, “
Electrophysiological signatures of resting state networks in the human brain
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
13170
13175
(
2007
).
23.
E.
Tagliazucchi
,
F.
Von Wegner
,
A.
Morzelewski
,
V.
Brodbeck
, and
H.
Laufs
, “
Dynamic bold functional connectivity in humans and its electrophysiological correlates
,”
Front. Hum. Neurosci.
6
,
339
(
2012
).
24.
A.
Demertzi
,
E.
Tagliazucchi
,
S.
Dehaene
,
G.
Deco
,
P.
Barttfeld
,
F.
Raimondo
,
C.
Martial
,
D.
Fernández-Espejo
,
B.
Rohaut
,
H.
Voss
et al., “
Human consciousness is supported by dynamic complex patterns of brain signal coordination
,”
Sci. Adv.
5
,
eaat7603
(
2019
).
25.
E.
Tagliazucchi
,
F.
von Wegner
,
A.
Morzelewski
,
V.
Brodbeck
,
K.
Jahnke
, and
H.
Laufs
, “
Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
15419
15424
(
2013
).
26.
E.
Tagliazucchi
and
H.
Laufs
, “
Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep
,”
Neuron
82
,
695
708
(
2014
).
27.
P.
Barttfeld
,
L.
Uhrig
,
J. D.
Sitt
,
M.
Sigman
,
B.
Jarraya
, and
S.
Dehaene
, “
Signature of consciousness in the dynamics of resting-state brain activity
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
887
892
(
2015
).
28.
M.
Greicius
, “
Resting-state functional connectivity in neuropsychiatric disorders
,”
Curr. Opin. Neurol.
21
,
424
430
(
2008
).
29.
A. T.
Drysdale
,
L.
Grosenick
,
J.
Downar
,
K.
Dunlop
,
F.
Mansouri
,
Y.
Meng
,
R. N.
Fetcho
,
B.
Zebley
,
D. J.
Oathes
,
A.
Etkin
et al., “
Resting-state connectivity biomarkers define neurophysiological subtypes of depression
,”
Nat. Med.
23
,
28
38
(
2017
).
30.
M. F.
Glasser
,
S. M.
Smith
,
D. S.
Marcus
,
J. L.
Andersson
,
E. J.
Auerbach
,
T. E.
Behrens
,
T. S.
Coalson
,
M. P.
Harms
,
M.
Jenkinson
,
S.
Moeller
et al., “
The human connectome project’s neuroimaging approach
,”
Nat. Neurosci.
19
,
1175
1187
(
2016
).
31.
P.
Sanz-Leon
,
S. A.
Knock
,
A.
Spiegler
, and
V. K.
Jirsa
, “
Mathematical framework for large-scale brain network modeling in the virtual brain
,”
NeuroImage
111
,
385
430
(
2015
).
32.
M.
Breakspear
, “
Dynamic models of large-scale brain activity
,”
Nat. Neurosci.
20
,
340
352
(
2017
).
33.
A semi-empirical model combines simulated local dynamics with empirical estimates of anatomical and functional connectivity.
34.
G.
Deco
,
J.
Cruzat
,
J.
Cabral
,
G. M.
Knudsen
,
R. L.
Carhart-Harris
,
P. C.
Whybrow
,
N. K.
Logothetis
, and
M. L.
Kringelbach
, “
Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD
,”
Curr. Biol.
28
,
3065
3074
(
2018
).
35.
V. K.
Jirsa
,
T.
Proix
,
D.
Perdikis
,
M. M.
Woodman
,
H.
Wang
,
J.
Gonzalez-Martinez
,
C.
Bernard
,
C.
Bénar
,
M.
Guye
,
P.
Chauvel
et al., “
The virtual epileptic patient: Individualized whole-brain models of epilepsy spread
,”
NeuroImage
145
,
377
388
(
2017
).
36.
M. L.
Kringelbach
,
J.
Cruzat
,
J.
Cabral
,
G. M.
Knudsen
,
R.
Carhart-Harris
,
P. C.
Whybrow
,
N. K.
Logothetis
, and
G.
Deco
, “
Dynamic coupling of whole-brain neuronal and neurotransmitter systems
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
9566
9576
(
2020
).
37.
G.
Deco
,
J.
Cruzat
,
J.
Cabral
,
E.
Tagliazucchi
,
H.
Laufs
,
N. K.
Logothetis
, and
M. L.
Kringelbach
, “
Awakening: Predicting external stimulation to force transitions between different brain states
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
18088
18097
(
2019
).
38.
G.
Deco
,
J.
Cabral
,
V. M.
Saenger
,
M.
Boly
,
E.
Tagliazucchi
,
H.
Laufs
,
E.
Van Someren
,
B.
Jobst
,
A.
Stevner
, and
M. L.
Kringelbach
, “
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
,”
NeuroImage
169
,
46
56
(
2018
).
39.
G.
Deco
,
M. L.
Kringelbach
,
V. K.
Jirsa
, and
P.
Ritter
, “
The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core
,”
Sci. Rep.
7
,
3095
(
2017
).
40.
Y. S.
Perl
,
C.
Pallacivini
,
I. P.
Ipina
,
M. L.
Kringelbach
,
G.
Deco
,
H.
Laufs
, and
E.
Tagliazucchi
, “Data augmentation based on dynamical systems for the classification of brain states,” bioRxiv (2020).
41.
Y. S.
Perl
,
H.
Boccacio
,
I.
Pérez-Ipiña
,
F.
Zamberlán
,
H.
Laufs
,
M.
Kringelbach
,
G.
Deco
, and
E.
Tagliazucchi
, “Generative embeddings of brain collective dynamics using variational autoencoders,” arXiv:2007.01378 (2020).
42.
Y. S.
Perl
,
C.
Pallavicini
,
I. P.
Ipina
,
A.
Demertzi
,
V.
Bonhomme
,
C.
Martial
,
R.
Panda
,
J.
Annen
,
A.
Ibanez
,
M.
Kringelbach
et al., “Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness,” bioRxiv (2020).
43.
I. P.
Ipiña
,
P. D.
Kehoe
,
M.
Kringelbach
,
H.
Laufs
,
A.
Ibañez
,
G.
Deco
,
Y. S.
Perl
, and
E.
Tagliazucchi
, “
Modeling regional changes in dynamic stability during sleep and wakefulness
,”
NeuroImage
215
,
116833
(
2020
).
44.
B. M.
Jobst
,
R.
Hindriks
,
H.
Laufs
,
E.
Tagliazucchi
,
G.
Hahn
,
A.
Ponce-Alvarez
,
A. B.
Stevner
,
M. L.
Kringelbach
, and
G.
Deco
, “
Increased stability and breakdown of brain effective connectivity during slow-wave sleep: Mechanistic insights from whole-brain computational modelling
,”
Sci. Rep.
7
,
4634
(
2017
).
45.
T.
Kunze
,
A.
Hunold
,
J.
Haueisen
,
V.
Jirsa
, and
A.
Spiegler
, “
Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study
,”
NeuroImage
140
,
174
187
(
2016
).
46.
G.
Deco
,
V. K.
Jirsa
,
P. A.
Robinson
,
M.
Breakspear
, and
K.
Friston
, “
The dynamic brain: From spiking neurons to neural masses and cortical fields
,”
PLoS Comput. Biol.
4
,
e1000092
(
2008
).
47.
Phenomenological models are concerned with simple mechanisms that produce dynamics matching those observed in the experimental data. The differential equations and their parameters are not chosen to be biophysically realistic but instead to display certain desired qualitative behaviors seen in the data. However, the dynamics of realistic models can be locally reduced to phenomenological models by finding their normal form.
48.
M.
Golos
,
V.
Jirsa
, and
E.
Daucé
, “
Multistability in large scale models of brain activity
,”
PLoS Comput. Biol.
11
,
e1004644
(
2015
).
49.
E. C.
Hansen
,
D.
Battaglia
,
A.
Spiegler
,
G.
Deco
, and
V. K.
Jirsa
, “
Functional connectivity dynamics: Modeling the switching behavior of the resting state
,”
NeuroImage
105
,
525
535
(
2015
).
50.
S. M.
Smith
,
D.
Vidaurre
,
C. F.
Beckmann
,
M. F.
Glasser
,
M.
Jenkinson
,
K. L.
Miller
,
T. E.
Nichols
,
E. C.
Robinson
,
G.
Salimi-Khorshidi
,
M. W.
Woolrich
et al., “
Functional connectomics from resting-state fMRI
,”
Trends Cogn. Sci.
17
,
666
682
(
2013
).
51.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2018
).
52.
A.
Palacios
, “
Heteroclinic cycles
,”
Scholarpedia
2
,
2352
(
2007
).
53.
I.
Tsuda
, “
Chaotic itinerancy
,”
Scholarpedia J.
8
,
4459
(
2013
).
54.
A.
Soong
and
C.
Stuart
, “
Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram
,”
Biol. Cybern.
62
,
55
62
(
1989
).
55.
W. S.
Pritchard
and
D. W.
Duke
, “
Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method
,”
Psychophysiology
29
,
182
192
(
1992
).
56.
A.
Babloyantz
,
J.
Salazar
, and
C.
Nicolis
, “
Evidence of chaotic dynamics of brain activity during the sleep cycle
,”
Phys. Lett. A
111
,
152
156
(
1985
).
57.
A.
Babloyantz
and
A.
Destexhe
, “
Low-dimensional chaos in an instance of epilepsy
,”
Proc. Natl. Acad. Sci. U.S.A.
83
,
3513
3517
(
1986
).
58.
C. A.
Skarda
and
W. J.
Freeman
, “
How brains make chaos in order to make sense of the world
,”
Behav. Brain Sci.
10
,
161
173
(
1987
).
59.
H.
Korn
and
P.
Faure
, “
Is there chaos in the brain? II. Experimental evidence and related models
,”
C. R. Biol.
326
,
787
840
(
2003
).
60.
P.
Faure
and
H.
Korn
, “
Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation
,”
C. R. Acad. Sci. Ser. III
324
,
773
793
(
2001
).
61.
G. T.
Einevoll
,
A.
Destexhe
,
M.
Diesmann
,
S.
Grün
,
V.
Jirsa
,
M.
de Kamps
,
M.
Migliore
,
T. V.
Ness
,
H. E.
Plesser
, and
F.
Schürmann
, “
The scientific case for brain simulations
,”
Neuron
102
,
735
744
(
2019
).
62.
C.
Letellier
and
O. E.
Rossler
, “
Rossler attractor
,”
Scholarpedia
1
,
1721
(
2006
).
63.
S.
Petkoski
and
V. K.
Jirsa
, “
Transmission time delays organize the brain network synchronization
,”
Philos. Trans. R. Soc. A
377
,
20180132
(
2019
).
64.
P.
Hagmann
,
L.
Cammoun
,
X.
Gigandet
,
R.
Meuli
,
C. J.
Honey
,
V. J.
Wedeen
, and
O.
Sporns
, “
Mapping the structural core of human cerebral cortex
,”
PLoS Biol.
6
,
e159
(
2008
).
65.
R. B.
Berry
,
R.
Brooks
,
C. E.
Gamaldo
,
S. M.
Harding
,
C.
Marcus
,
B. V.
Vaughn
et al., The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications (American Academy of Sleep Medicine, Darien, IL, 2012), Vol. 176, p. 2012.
66.
N.
Tzourio-Mazoyer
,
B.
Landeau
,
D.
Papathanassiou
,
F.
Crivello
,
O.
Etard
,
N.
Delcroix
,
B.
Mazoyer
, and
M.
Joliot
, “
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
,”
NeuroImage
15
,
273
289
(
2002
).
67.
G. H.
Glover
,
T.-Q.
Li
, and
D.
Ress
, “
Image-based method for retrospective correction of physiological motion effects in fMRI: Retroicor
,”
Magn. Reson. Med.
44
,
162
167
(
2000
).
68.
D.
Cordes
,
V. M.
Haughton
,
K.
Arfanakis
,
J. D.
Carew
,
P. A.
Turski
,
C. H.
Moritz
,
M. A.
Quigley
, and
M. E.
Meyerand
, “
Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
,”
Am. J. Neuroradiol.
22
,
1326
1333
(
2001
).
69.
R.
Dosselmann
and
X. D.
Yang
, “
A comprehensive assessment of the structural similarity index
,”
Signal Image Video Process.
5
,
81
91
(
2011
).
70.
Z.
Wang
,
A. C.
Bovik
,
H. R.
Sheikh
, and
E. P.
Simoncelli
, “
Image quality assessment: From error visibility to structural similarity
,”
IEEE Trans. Image Process.
13
,
600
612
(
2004
).
71.
A.
Pikovsky
,
J.
Kurths
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
72.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
2003
), Vol. 69.
73.
K.
Xu
,
J. P.
Maidana
,
S.
Castro
, and
P.
Orio
, “
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators
,”
Sci. Rep.
8
,
1
(
2018
).
74.
C. O.
Fritz
,
P. E.
Morris
, and
J. J.
Richler
, “
Effect size estimates: Current use, calculations, and interpretation
,”
J. Exp. Psychol. Gen.
141
,
2
(
2012
).
75.
D.
Kleppner
and
R.
Kolenkow
,
An Introduction to Mechanics
(
Cambridge University Press
,
2014
).
76.
L.
Abbott
and
T. B.
Kepler
, “Model neurons: From Hodgkin-Huxley to Hopfield,” in Statistical Mechanics of Neural Networks (Springer, 1990), pp. 5–18.
77.
S. W.
Oh
,
J. A.
Harris
,
L.
Ng
,
B.
Winslow
,
N.
Cain
,
S.
Mihalas
,
Q.
Wang
,
C.
Lau
,
L.
Kuan
,
A. M.
Henry
et al., “
A mesoscale connectome of the mouse brain
,”
Nature
508
,
207
214
(
2014
).
78.
H.
Markram
, “
The human brain project
,”
Sci. Am.
306
,
50
55
(
2012
).
79.
J.
Courtiol
,
M.
Guye
,
F.
Bartolomei
,
S.
Petkoski
, and
V. K.
Jirsa
, “
Dynamical mechanisms of interictal resting-state functional connectivity in epilepsy
,”
J. Neurosci.
40
,
5572
5588
(
2020
).
80.
M.
Schirner
,
A. R.
McIntosh
,
V.
Jirsa
,
G.
Deco
, and
P.
Ritter
, “
Inferring multi-scale neural mechanisms with brain network modelling
,”
Elife
7
,
e28927
(
2018
).
81.
E. T.
Rolls
and
G.
Deco
,
The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function
(
Oxford University Press
,
Oxford
,
2010
), Vol. 34.
82.
R. M.
Hutchison
,
T.
Womelsdorf
,
E. A.
Allen
,
P. A.
Bandettini
,
V. D.
Calhoun
,
M.
Corbetta
,
S.
Della Penna
,
J. H.
Duyn
,
G. H.
Glover
,
J.
Gonzalez-Castillo
et al., “
Dynamic functional connectivity: Promise, issues, and interpretations
,”
NeuroImage
80
,
360
378
(
2013
).
83.
A. A.
Faisal
,
L. P.
Selen
, and
D. M.
Wolpert
, “
Noise in the nervous system
,”
Nat. Rev. Neurosci.
9
,
292
303
(
2008
).
84.
A.
Blumer
,
A.
Ehrenfeucht
,
D.
Haussler
, and
M. K.
Warmuth
, “
Occam’s razor
,”
Inf. Process. Lett.
24
,
377
380
(
1987
).
85.
P. E.
Rapp
, “
Is there evidence for chaos in the human central nervous system
,” in
Chaos Theory in Psychology and the Life Sciences
, edited by R. Robertson and A. Combs (Psychology Press,
2014
).
86.
H.
Preissl
,
W.
Lutzenberger
, and
F.
Pulvermüller
, “
Is there chaos in the brain?
,”
Behav. Brain Sci.
19
,
307
308
(
1996
).
87.
D.
Hansel
and
H.
Sompolinsky
, “
Synchronization and computation in a chaotic neural network
,”
Phys. Rev. Lett.
68
,
718
(
1992
).
88.
M.
Rabinovich
and
H.
Abarbanel
, “
The role of chaos in neural systems
,”
Neuroscience
87
,
5
14
(
1998
).
89.
J. L.
Hindmarsh
and
R.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. Lond. B. Biol. Sci.
221
,
87
102
(
1984
).
90.
D.
Hansel
and
H.
Sompolinsky
, “
Chaos and synchrony in a model of a hypercolumn in visual cortex
,”
J. Comput. Neurosci.
3
,
7
34
(
1996
).
91.
D.
Battaglia
,
N.
Brunel
, and
D.
Hansel
, “
Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation
,”
Phys. Rev. Lett.
99
,
238106
(
2007
).
92.
J.
Kadmon
and
H.
Sompolinsky
, “
Transition to chaos in random neuronal networks
,”
Phys. Rev. X
5
,
041030
(
2015
).
93.
P.
Orio
,
M.
Gatica
,
R.
Herzog
,
J. P.
Maidana
,
S.
Castro
, and
K.
Xu
, “
Chaos versus noise as drivers of multistability in neural networks
,”
Chaos
28
,
106321
(
2018
).
94.
G.
Deco
,
V.
Jirsa
,
A. R.
McIntosh
,
O.
Sporns
, and
R.
Kötter
, “
Key role of coupling, delay, and noise in resting brain fluctuations
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
10302
10307
(
2009
).
95.
S.
Petkoski
,
J. M.
Palva
, and
V. K.
Jirsa
, “
Phase-lags in large scale brain synchronization: Methodological considerations and in-silico analysis
,”
PLoS Comput. Biol.
14
,
e1006160
(
2018
).
96.
J.
Cabral
,
H.
Luckhoo
,
M.
Woolrich
,
M.
Joensson
,
H.
Mohseni
,
A.
Baker
,
M. L.
Kringelbach
, and
G.
Deco
, “
Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations
,”
NeuroImage
90
,
423
435
(
2014
).
97.
T.
Bayne
and
J.
Hohwy
, “Modes of consciousness,” in Finding Consciousness: Neuroscience, Ethics and Law of Severe Brain Damage (Oxford University Press, 2016), pp. 57–80.
98.
J.
Piccinini
, “
Awake time series
,”
figshare dataset
(
2020
), see .

Supplementary Material

You do not currently have access to this content.