The routes to chaos play an important role in predictions about the transitions from regular to irregular behavior in nonlinear dynamical systems, such as electrical oscillators, chemical reactions, biomedical rhythms, and nonlinear wave coupling. Of special interest are dissipative systems obtained by adding a dissipation term in a given Hamiltonian system. If the latter satisfies the so-called twist property, the corresponding dissipative version can be called a “dissipative twist system.” Transitions to chaos in these systems are well established; for instance, the Curry–Yorke route describes the transition from a quasiperiodic attractor on torus to chaos passing by a chaotic banded attractor. In this paper, we study the transitions from an attractor on torus to chaotic motion in dissipative nontwist systems. We choose the dissipative standard nontwist map, which is a non-conservative version of the standard nontwist map. In our simulations, we observe the same transition to chaos that happens in twist systems, known as a soft one, where the quasiperiodic attractor becomes wrinkled and then chaotic through the Curry–Yorke route. By the Lyapunov exponent, we study the nature of the orbits for a different set of parameters, and we observe that quasiperiodic motion and periodic and chaotic behavior are possible in the system. We observe that they can coexist in the phase space, implying in multistability. The different coexistence scenarios were studied by the basin entropy and by the boundary basin entropy.

1.
G. M.
Zaslavsky
,
Hamiltonian Chaos and Fractional Dynamics
(
Oxford University Press on Demand
,
2005
).
2.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
(
Springer
,
1992
), Vol.
38
.
3.
A. M. O.
Almeida
,
Hamiltonian Systems: Chaos and Quantization
(
Cambridge University Press
,
1990
).
4.
P. J.
Morrison
, “
Magnetic field lines, Hamiltonian dynamics, and nontwist systems
,”
Phys. Plasmas
7
,
2279
2289
(
2000
).
5.
R. S.
MacKay
,
J. D.
Meiss
, and
I. C.
Percival
, “
Stochasticity and transport in Hamiltonian systems
,”
Phys. Rev. Lett.
52
,
697
(
1984
).
6.
A.
Wurm
,
A.
Apte
, and
P. J.
Morrison
, “
On reconnection phenomena in the standard nontwist map
,”
Braz. J. Phys.
34
,
1700
1706
(
2004
).
7.
D.
del Castillo-Negrete
and
P. J.
Morrison
, “
Chaotic transport by Rossby waves in shear flow
,”
Phys. Fluids A: Fluid Dyn.
5
,
948
965
(
1993
).
8.
D.
del Castillo-Negrete
,
J. M.
Greene
, and
P. J.
Morrison
, “
Area preserving nontwist maps: Periodic orbits and transition to chaos
,”
Physica D
91
,
1
23
(
1996
).
9.
J. D.
Szezech
, Jr.,
I. L.
Caldas
,
S. R.
Lopes
,
R. L.
Viana
, and
P. J.
Morrison
, “
Transport properties in nontwist area-preserving maps
,”
Chaos
19
,
043108
(
2009
).
10.
J. D.
Szezech
, Jr.,
I. L.
Caldas
,
S. R.
Lopes
,
P. J.
Morrison
, and
R. L.
Viana
, “
Effective transport barriers in nontwist systems
,”
Phys. Rev. E
86
,
036206
(
2012
).
11.
I. L.
Caldas
,
R. L.
Viana
,
C. V.
Abud
,
J. C. D.
Fonseca
,
Z. D. O.
Guimarães Filho
,
T.
Kroetz
,
F. A.
Marcus
,
A. B.
Schelin
,
J. D.
Szezech
,
D. L.
Toufen
et al.,
Shearless transport barriers in magnetically confined plasmas
,”
Plasma Phys. Control. Fusion
54
,
124035
(
2012
).
12.
M.
Mugnaine
,
A. C.
Mathias
,
M. S.
Santos
,
A. M.
Batista
,
J. D.
Szezech
, and
R. L.
Viana
, “
Dynamical characterization of transport barriers in nontwist Hamiltonian systems
,”
Phys. Rev. E
97
,
012214
(
2018
).
13.
C. G. L.
Martins
,
R. E.
de Carvalho
,
I. L.
Caldas
, and
M.
Roberto
, “
Labyrinthic standard non-twist map
,”
J. Phys. A: Math. Theor.
44
,
045102
(
2010
).
14.
R. E.
De Carvalho
and
C. V.
Abud
, “
Robust attractor of non-twist systems
,”
Physica A
440
,
42
48
(
2015
).
15.
L. K.
Kato
and
R. E.
De Carvalho
, “
Transport barriers with shearless attractors
,”
Phys. Rev. E
99
,
032218
(
2019
).
16.
A.
Wurm
and
K. M.
Martini
, “
Breakup of inverse golden mean shearless tori in the two-frequency standard nontwist map
,”
Phys. Lett. A
377
,
622
627
(
2013
).
17.
M.
Mugnaine
,
A. M.
Batista
,
I. L.
Caldas
,
J. D.
Szezech
, and
R. L.
Viana
, “
Ratchet current in nontwist Hamiltonian systems
,”
Chaos
30
,
093141
(
2020
).
18.
J. P.
Van der Weele
and
T. P.
Valkering
, “
The birth process of periodic orbits in non-twist maps
,”
Physica A
169
,
42
72
(
1990
).
19.
C.
Simó
, “
Invariant curves of analytic perturbed nontwist area preserving maps
,”
Regul. Chaotic Dyn.
3
,
180
195
(
1998
).
20.
C.
Letellier
,
V.
Messager
, and
R.
Gilmore
, “
From quasiperiodicity to toroidal chaos: Analogy between the Curry-Yorke map and the van der Pol system
,”
Phys. Rev. E
77
,
046203
(
2008
).
21.
M. S.
Baptista
and
I. L.
Caldas
, “
Dynamics of the two-frequency torus breakdown in the driven double scroll circuit
,”
Phys. Rev. E
58
,
4413
(
1998
).
22.
J. H.
Curry
and
J. A.
Yorke
, “A transition from Hopf bifurcation to chaos: Computer experiments with maps on R2,” in The Structure of Attractors in Dynamical Systems (Springer, 1978), pp. 48–66.
23.
T.
Pereira
,
M. S.
Baptista
,
M. B.
Reyes
,
I. L.
Caldas
,
J. C.
Sartorelli
, and
J.
Kurths
, “
A scenario for torus T2 destruction via a global bifurcation
,”
Chaos Solitons Fractals
39
,
2198
2210
(
2009
).
24.
T.
Pereira
,
M. S.
Baptista
,
M. B.
Reyes
,
I. L.
Caldas
,
J. C.
Sartorelli
, and
J.
Kurths
, “
Global bifurcation destroying the experimental torus T2
,”
Phys. Rev. E
73
,
017201
(
2006
).
25.
J. S. E.
Portela
,
I. L.
Caldas
, and
R. L.
Viana
, “
Tokamak magnetic field lines described by simple maps
,”
Eur. Phys. J. Spec. Top.
165
,
195
210
(
2008
).
26.
S.
Shinohara
and
Y.
Aizawa
, “
Indicators of reconnection processes and transition to global chaos in nontwist maps
,”
Prog. Theor. Phys.
100
,
219
233
(
1998
).
27.
J.-P.
Eckmann
and
D.
Ruelle
, “Ergodic theory of chaos and strange attractors,” in The Theory of Chaotic Attractors (Springer, 1985), pp. 273–312.
28.
M.
Sandri
, “
Numerical calculation of Lyapunov exponents
,”
Math. J.
6
,
78
84
(
1996
).
29.
K.
Geist
,
U.
Parlitz
, and
W.
Lauterborn
, “
Comparison of different methods for computing Lyapunov exponents
,”
Prog. Theor. Phys.
83
,
875
893
(
1990
).
30.
D.
del Castillo-Negrete
,
J. M.
Greene
, and
P. J.
Morrison
, “
Renormalization and transition to chaos in area preserving nontwist maps
,”
Physica D
100
,
311
329
(
1997
).
31.
V. I.
Arnol’d
,
Geometrical Methods in the Theory of Ordinary Differential Equations
(
Springer
,
1988
).
32.
R.
Van Buskirk
and
C.
Jeffries
, “
Observation of chaotic dynamics of coupled nonlinear oscillators
,”
Phys. Rev. A
31
,
3332
(
1985
).
33.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
,
167
218
(
2014
).
34.
U.
Feudel
and
C.
Grebogi
, “
Multistability and the control of complexity
,”
Chaos
7
,
597
604
(
1997
).
35.
M. A.
Lieberman
and
K. Y.
Tsang
, “
Transient chaos in dissipatively perturbed, near-integrable Hamiltonian systems
,”
Phys. Rev. Lett.
55
,
908
(
1985
).
36.
U.
Feudel
, “
Complex dynamics in multistable systems
,”
Int. J. Bifurcat. Chaos
18
,
1607
1626
(
2008
).
37.
A.
Daza
,
A.
Wagemakers
,
B.
Georgeot
,
D.
Guéry-Odelin
, and
M. A.
Sanjuán
, “
Basin entropy: A new tool to analyze uncertainty in dynamical systems
,”
Sci. Rep.
6
,
31416
(
2016
).
38.
A.
Puy
,
A.
Daza
,
A.
Wagemakers
, and
M. A.
Sanjuán
, “
A test for fractal boundaries based on the basin entropy
,”
Commun. Nonlinear Sci. Numer. Simul.
95
,
105588
(
2020
).
39.
A.
Daza
,
B.
Georgeot
,
D.
Guéry-Odelin
,
A.
Wagemakers
, and
M. A.
Sanjuán
, “
Chaotic dynamics and fractal structures in experiments with cold atoms
,”
Phys. Rev. A
95
,
013629
(
2017
).
You do not currently have access to this content.