Quantitative systems pharmacology (QSP) proved to be a powerful tool to elucidate the underlying pathophysiological complexity that is intensified by the biological variability and overlapped by the level of sophistication of drug dosing regimens. Therapies combining immunotherapy with more traditional therapeutic approaches, including chemotherapy and radiation, are increasingly being used. These combinations are purposed to amplify the immune response against the tumor cells and modulate the suppressive tumor microenvironment (TME). In order to get the best performance from these combinatorial approaches and derive rational regimen strategies, a better understanding of the interaction of the tumor with the host immune system is needed. The objective of the current work is to provide new insights into the dynamics of immune-mediated TME and immune-oncology treatment. As a case study, we will use a recent QSP model by Kosinsky et al. [J. Immunother. Cancer 6, 17 (2018)] that aimed to reproduce the dynamics of interaction between tumor and immune system upon administration of radiation therapy and immunotherapy. Adopting a dynamical systems approach, we here investigate the qualitative behavior of the representative components of this QSP model around its key parameters. The ability of T cells to infiltrate tumor tissue, originally identified as responsible for individual therapeutic inter-variability [Y. Kosinsky et al., J. Immunother. Cancer 6, 17 (2018)], is shown here to be a saddle-node bifurcation point for which the dynamical system oscillates between two states: tumor-free or maximum tumor volume. By performing a bifurcation analysis of the physiological system, we identified equilibrium points and assessed their nature. We then used the traditional concept of basin of attraction to assess the performance of therapy. We showed that considering the therapy as input to the dynamical system translates into the changes of the trajectory shapes of the solutions when approaching equilibrium points and thus providing information on the issue of therapy.

1.
Y.
Kosinsky
,
S. J.
Dovedi
,
K.
Peskov
,
V.
Voronova
,
L.
Chu
,
H.
Tomkinson
,
N.
Al-Huniti
,
D. R.
Stanski
, and
G.
Helmlinger
, “
Radiation and PD-(l)1 treatment combinations: Immune response and dose optimization via a predictive systems model
,”
J. Immunother. Cancer
6
(
1
),
17
(
2018
).
2.
P. K.
Sorger
,
S. R. B.
Allerheiligen
,
D. R.
Abernethy
,
R. B.
Altman
,
K. L. R.
Brouwer
,
A.
Califano
,
D. Z.
D’Argenio
,
R.
Iyengar
,
W. J.
Jusko
,
R.
Lalonde
,
D. A.
Lauffenburger
,
B.
Shoichet
,
J. L.
Stevens
,
S.
Subramaniam
,
P.
Van der Graaf
, and
P.
Vicini
, “Quantitative and systems pharmacology in the post-genomic era: New approaches to discovering drugs and understanding therapeutic mechanisms” in NIH White Paper QSP Workshop Group ((National Institutes of Health, Bethesda, MD, 2011).
3.
S.
Bakshi
,
E. C.
de Lange
,
P.
Van der Graaf
,
M.
Danhof
, and
L. A.
Peletier
, “
Understanding the behavior of systems pharmacology models using mathematical analysis of differential equations: Prolactin modeling as a case study
,”
CPT: Pharmacometrics Syst. Pharmacol.
5
,
339
351
(
2016
).
4.
D. C.
De Souza
,
M.
Craig
,
T.
Cassidy
,
J.
Li
,
F.
Nekka
,
J.
Bélair
, and
A. R.
Humphries
, “
Transit and lifespan in neutrophil production: Implications for drug intervention
,”
J. Pharmacokinet. Pharmacodyn.
45
(
1
),
59
77
(
2017
).
5.
O.
Milberg
,
C.
Gong
,
M.
Jafarnejad
,
I. H.
Bartelink
,
B.
Wang
,
P.
Vicini
,
R.
Narwal
,
L.
Roskos
, and
A. S.
Popel
, “
A QSP model for predicting clinical responses to monotherapy, combination and sequential therapy following CTLA-4, PD-1, and PD-l1 checkpoint blockade
,”
Sci. Rep.
9
(
1
),
11286
(
2019
).
6.
K.
Peskov
,
I.
Azarov
,
L.
Chu
,
V.
Voronova
,
Y.
Kosinsky
, and
G.
Helmlinger
, “
Quantitative mechanistic modeling in support of pharmacological therapeutics development in immuno-oncology
,”
Front. Immunol.
10
,
924
(
2019
).
7.
A.
Friedman
and
X.
Lai
, “
Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model
,”
PLoS One
13
(
2
),
e0192449
(
2018
).
8.
L.
Bodgi
,
A.
Canet
,
L.
Pujo-Menjouet
,
A.
Lesne
,
J. M.
Victor
, and
N.
Foray
, “
Mathematical models of radiation action on living cells: From the target theory to the modern approaches. A historical and critical review
,”
J. Theor. Biol.
394
,
93
101
(
2016
).
9.
R.
Serre
,
S.
Benzekry
,
L.
Padovani
,
C.
Meille
,
N.
André
,
J.
Ciccolini
,
F.
Barlesi
,
X.
Muracciole
, and
D.
Barbolosi
, “
Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy
,”
Cancer Res.
76
(
17
),
4931
4940
(
1982
).
10.
L. G.
dePillis
,
A.
Eladdadi
, and
A. E.
Radunskaya
, “
Modeling cancer-immune responses to therapy
,”
J. Pharmacokinet. Pharmacodyn.
41
(
5
),
461
478
(
2014
).
11.
A. J. N.
Anelone
and
S. K.
Spurgeon
, “
Modelling and simulation of the dynamics of the antigen-specific T cell response using variable structure control theory
,”
PLoS One
11
(
11
),
e0166163
(
2016
).
12.
A.
Glick
and
A.
Mastroberardino
, “
An optimal control approach for the treatment of solid tumors with angiogenesis inhibitors
,”
Mathematics
5
(
4
),
49
(
2017
).
13.
K. D.
Argyri
,
D. D.
Dionysiou
,
F. D.
Misichroni
, and
G. S.
Stamatakos
, “
Numerical simulation of vascular tumour growth under antiangiogenic treatment: Addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data
,”
Biol. Direct
11
(
1
),
12
(
2016
).
14.
T.
Burzykowski
,
E.
Coart
,
E. D.
Saad
,
Q.
Shi
,
D. W.
Sommeijer
,
C.
Bokemeyer
,
E.
Díaz-Rubio
,
J. Y.
Douillard
,
A.
Falcone
,
C. S.
Fuchs
,
R. M.
Goldberg
,
J. R.
Hecht
,
P. M.
Hoff
,
H.
Hurwitz
,
F. F.
Kabbinavar
,
M.
Koopman
,
T. S.
Maughan
,
C. J. A.
Punt
,
L.
Saltz
,
H. J.
Schmoll
,
M. T.
Seymour
,
N. C.
Tebbutt
,
C.
Tournigand
,
E.
Van Cutsem
,
A.
de Gramont
,
J. R.
Zalcberg
, and
M.
Buyse
, “
Evaluation of continuous tumor-size–based end points as surrogates for overall survival in randomized clinical trials in metastatic colorectal cancer
,”
JAMA Network Open
2
(
9
),
e1911750
(
2019
).
15.
M.
Fahmy
and
J.
O’Reilly
, “
A note on the Routh–Hurwitz test
,”
IEEE Trans. Automat. Control
27
(
2
),
483
485
(
1982
).
16.
T. F. C.
Chan
and
H. B.
Keller
, “
Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue problems
,”
SIAM J. Sci. Stat. Comput.
3
(
2
),
173
194
(
1982
).
17.
E. A.
Sarapata
and
L. G.
de Pillis
, “
A comparison and catalog of intrinsic tumor growth models
,”
Bull. Math. Biol.
76
(
8
),
2010
2024
(
2014
).
18.
K. M.
Kokolus
,
M. L.
Capitano
,
C. T.
Lee
,
J. W. L.
Eng
,
J. D.
Waight
,
B. L.
Hylander
,
S.
Sexton
,
C. C.
Hong
,
C. J.
Gordon
,
S. I.
Abrams
, and
E. A.
Repasky
, “
Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
50
),
20176
20181
(
2013
).
19.
M. G.
Lechner
,
S. S.
Karimi
,
K.
Barry-Holson
,
T. E.
Angell
,
K. A.
Murphy
,
C. H.
Church
,
J. R.
Ohlfest
,
P.
Hu
, and
A. L.
Epstein
, “
Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy
,”
J. Immunother.
36
(
9
),
477
489
(
2013
).
20.
S. J.
Dovedi
,
A. L.
Adlard
,
G.
Lipowska-Bhalla
,
C.
McKenna
,
S.
Jones
,
E. J.
Cheadle
,
I. J.
Stratford
,
E.
Poon
,
M.
Morrow
,
R.
Stewart
,
H.
Jones
,
R. W.
Wilkinson
,
J.
Honeychurch
, and
T. M.
Illidge
, “
Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-l1 blockade
,”
Cancer Res.
74
(
19
),
5458
5468
(
2014
).
21.
S.
Zalba
,
A. M.
Contreras-Sandoval
,
E.
Martisova
,
R.
Debets
,
C.
Smerdou
, and
M. J.
Garrido
, “
Quantification of pharmacokinetic profiles of PD-1/PD-l1 antibodies by validated ELISAs
,”
Pharmaceutics
12
(
6
),
595
(
2020
).
You do not currently have access to this content.