Urban mobility involves many interacting components: buses, cars, commuters, pedestrians, trains, etc., making it a very complex system to study. Even a bus system responsible for delivering commuters from their origins to their destinations in a loop service already exhibits very complicated dynamics. Here, we investigate the dynamics of a simplified version of such a bus loop system consisting of two buses serving three bus stops. Specifically, we consider a configuration of one bus operating as a normal bus that picks up passengers from bus stops A and B and then delivers them to bus stop C, while the second bus acts as an express bus that picks up passengers only from bus stop B and then delivers them to bus stop C. The two buses are like asymmetric agents coupled to bus stop B as they interact via picking up passengers from this common bus stop. Intriguingly, this semi-express bus configuration is more efficient and has a lower average waiting time for buses compared to a configuration of two normal buses or a configuration of two express buses. We reckon that the efficiency arises from the chaotic dynamics exhibited in the semi-express system, where the tendency toward anti-bunching is greater than that toward bunching, in contradistinction to the regular bunching behavior of two normal buses or the independent periodic behavior of two non-interacting express buses.

1.
R.
Iten
,
T.
Metger
,
H.
Wilming
,
L.
del Rio
, and
R.
Renner
,
Phys. Rev. Lett.
124
,
010508
(
2020
).
2.
A.
Karpatne
,
W.
Watkins
,
J.
Read
, and
V.
Kumar
, “Physics-guided neural networks (PGNN): An application in lake temperature modeling,” arXiv:1710.11431 (2018).
3.
S. K.
Singh
,
R.
Yang
,
A.
Behjat
,
R.
Rai
,
S.
Chowdhury
, and
I.
Matei
, in 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2019), pp. 34–41.
4.
T.
Cohen
,
M.
Weiler
,
B.
Kicanaoglu
, and
M.
Welling
,
Proc. Mach. Learn. Res.
97
,
1321
(
2019
).
5.
M. C. N.
Cheng
,
V.
Anagiannis
,
M.
Weiler
,
P.
de Haan
,
T. S.
Cohen
, and
M.
Welling
, “Covariance in physics and convolutional neural networks,” arXiv:1906.02481 (2019).
6.
A.
Einstein
, “Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin),” Part 2, 844 (1915).
7.
V.-L.
Saw
,
Phys. Rev. D
94
,
104004
(
2016
).
8.
G.
Newell
and
R.
Potts
,
2nd Aust. Road Res. Board
2
,
388
(
1964
).
9.
R. A.
Chapman
and
J. F.
Michel
,
Transp. Sci.
12
,
165
(
1978
).
10.
W. B.
Powell
and
Y.
Sheffi
,
Transp. Sci.
17
,
376
(
1983
).
11.
C.
Gershenson
and
L. A.
Pineda
,
PLoS ONE
4
,
e7292
(
2009
).
12.
G.
Bellei
and
K.
Gkoumas
,
Public Transp.
2
,
269
(
2010
).
13.
V.-L.
Saw
,
N. N.
Chung
,
W. L.
Quek
,
Y. E. I.
Pang
, and
L. Y.
Chew
,
Sci. Rep.
9
,
6887
(
2019
).
14.
L. Y.
Chew
,
V.-L.
Saw
, and
Y. E. I.
Pang
, “Stability of anti-bunched buses and local unidirectional Kuramoto oscillators,” in 15th International Conference on Dynamical Systems—Theory and Application, Łódź, PolandarXiv:1912.06470 (2020).
15.
M.
Abkowitz
and
I.
Engelstein
,
Transp. Res. Rec.: J. Transp. Res. Board
961
,
1
(
1984
).
16.
M. D.
Rossetti
and
T.
Turitto
,
Transp. Res. Part A: Policy Pract.
32
,
607
(
1998
).
17.
X. J.
Eberlein
,
N. H. M.
Wilson
, and
D.
Bernstein
,
Transp. Sci.
35
,
1
(
2001
).
18.
M. D.
Hickman
,
Transp. Sci.
35
,
215
(
2001
).
19.
L.
Fu
and
X.
Yang
,
Transp. Res. Rec.
1791
,
6
(
2002
).
20.
Y.
Bin
,
Y.
Zhongzhen
, and
Y.
Baozhen
,
J. Intell. Transp. Syst.
10
,
151
(
2006
).
21.
N.
Mukai
,
T.
Watanabe
, and
J.
Feng
, Route Optimisation Using Q-learning for On-demand Bus Systems, edited by I. Lovrek, R. Howlett, and L. Jain (Springer, Berlin, 2008).
22.
C. F.
Daganzo
,
Transp. Res. Part B: Methodol.
43
,
913
(
2009
).
23.
C. E.
Cortés
,
D.
Sáez
,
F.
Milla
,
A.
Núñez
, and
M.
Riquelme
,
Transp. Res. Part C: Emerg. Technol.
18
,
757
(
2010
).
24.
O.
Cats
,
A. N.
Larijani
,
H. N.
Koutsopoulos
, and
W.
Burghout
,
Transp. Res. Rec.
2216
,
51
(
2011
).
25.
C.
Gershenson
,
PLoS ONE
6
,
e21469
(
2011
).
26.
J. J.
Bartholdi
and
D. D.
Eisenstein
,
Transp. Res. Part B: Methodol.
46
,
481
(
2012
).
27.
C.
Chen
,
W.
Chen
, and
Z.
Chen
,
Adv. Transp. Stud. Spec. Issue
2
,
41
(
2015
).
28.
O.
Ibarra-Rojas
,
F.
Delgado
,
R.
Giesen
, and
J.
Munoz
,
Transp. Res. Part B: Methodol.
77
,
38
(
2015
).
29.
W.
Chen
,
K.
Zhou
, and
C.
Chen
, in IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (IEEE, 2016), p. 100.
30.
L.
Moreira-Matias
,
O.
Cats
,
J.
Gama
,
J.
Mendes-Moreira
, and
J. F.
de Sousa
,
Appl. Soft Comput.
47
,
460
(
2016
).
31.
P.
Wang
,
X.
Chen
,
W.
Chen
,
L.
Cheng
, and
D.
Lei
,
Transp. Res. Rec.
2672
,
143
(
2018
).
32.
F.
Alesiani
and
K.
Gkiotsalitis
, in 21st International Conference on Intelligent Transportation Systems (ITSC) (IEEE, 2018).
33.
K.
Menda
,
Y.
Chen
,
J.
Grana
,
J. W.
Bono
,
B. D.
Tracey
,
M. J.
Kochenderfer
, and
D.
Wolpert
,
IEEE Trans. Intell. Transp. Syst.
20
,
1259
(
2019
).
34.
F.
Delgado
,
J. C.
Muñoz
,
R.
Giesen
, and
A.
Cipriano
,
Transp. Res. Rec.
2090
,
59
(
2009
).
35.
F.
Delgado
,
J. C.
Munoz
, and
R.
Giesen
,
Transp. Res. Part B: Methodol.
46
,
1202
(
2012
).
36.
S. Z.
Zhao
,
C. X.
Lu
,
S. D.
Liang
, and
H. S.
Liu
,
Math. Prob. Eng.
2016
,
8950209
.
37.
W.
Sun
and
J.-D.
Schmöcker
,
Transp. B: Transp. Dyn.
6
,
151
(
2018
).
38.
V.-L.
Saw
and
L. Y.
Chew
,
PLoS ONE
15
,
e0230377
(
2020
).
39.
V.-L.
Saw
and
L. Y.
Chew
,
J. Phys.: Complexity
1
,
015005
(
2020
).
40.
V.-L.
Saw
,
L.
Vismara
, and
L. Y.
Chew
,
Complexity
2020
,
7274254
.
41.
Y.
Li
,
J.-M.
Rousseau
, and
M.
Gendreau
, Proceedings of the thirty-third annual meeting (Transportation Research Forum, 1991), p. 157.
42.
X. J.
Eberlein
, “Real-time control strategies in transit operations: Models and analysis, ” Ph.D. dissertation (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 1995).
43.
L.
Fu
,
Q.
Liu
, and
P.
Calamai
,
Transp. Res. Rec.
1857
,
48
(
2003
).
44.
A.
Sun
and
M.
Hickman
,
J. Intell. Transp. Syst.
9
,
91
(
2005
).
45.
Z.
Liu
,
Y.
Yan
,
X.
Qu
, and
Y.
Zhang
,
Transp. Res. Part C: Emerg. Technol.
35
,
46
(
2013
).
46.
P. G.
Furth
,
Transp. Sci.
19
,
13
(
1985
).
47.
P.
Furth
and
F.
Day
,
Transp. Res. Rec.
1011
,
23
(
1985
).
48.
X. J.
Eberlein
,
N. H.
Wilson
,
C.
Barnhart
, and
D.
Bernstein
,
Transp. Res. Part B: Methodol.
32
,
77
(
1998
).
49.
W. L.
Quek
,
N. N.
Chung
,
V.-L.
Saw
, and
L. Y.
Chew
,
Complexity
2021
,
2606191
.
50.
L.
Vismara
,
L. Y.
Chew
, and
V.-L.
Saw
, “Optimal assignment of buses to bus stops in a loop by reinforcement learning,” arXiv:2101.06464 (2021).
51.
R.
Sutton
and
A.
Barto
,
Reinforcement Learning: An Introduction
(
MIT Press
,
Cambridge, MA
,
2018
).
52.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
(
Springer
,
New York
,
1996
).
53.
B. G.
Sanderson
,
J. Phys. Oceanogr.
28
,
1271
(
1998
).
54.
R.
Pincus
and
K. F.
Evans
,
J. Atmos. Sci.
66
,
3131
(
2009
).
55.
T.
Nagatani
,
Phys. Rev. E
66
,
046103
(
2002
).
56.
T.
Nagatani
,
Phys. Rev. E
68
,
036107
(
2003
).
57.
T.
Nagatani
,
Physica A
319
,
568
(
2003
).
58.
T.
Nagatani
,
Physica A
323
,
686
(
2003
).
59.
T.
Nagatani
,
Physica A
371
,
683
(
2006
).
60.
P.
Ball
,
Nature
68
,
036107
(
2003
).
You do not currently have access to this content.