The multistable states of low-frequency, short-wavelength nonlinear acoustic-gravity waves propagating in a small slope with respect to the vertical ones are explored in a rotating atmosphere. The bifurcation patterns en route to irregular behaviors and the long-term dynamics of the low-order nonlinear model system are studied for varying air Prandtl number σ between 0.5 and 1. In contrast to non-rotation, the transition to the unsteady motion occurs both catastrophically and non-catastrophically due to the Earth’s rotation. The connections between the Prandtl number and the slope parameter on the stabilities of the system are highlighted. The model system exhibits hysteresis-induced multistability with coexisting finite multi-periodic, periodic–chaotic attractors in certain parameter spaces depending on the initial conditions. Studies revealed that the rotation parameter instigates these heterogeneous coexisting attractors, resulting in the unpredictable dynamics. However, the relevance of this study is strongly restricted to a very small vertical wavelength, a small slope, and a weakly stratified atmosphere.

1.
D. C.
Fritts
and
M. J.
Alexander
, “
Gravity wave dynamics and effects in the middle atmosphere
,”
Rev. Geophys.
41
,
1003
(
2003
).
2.
R. V.
Row
, “
Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake
,”
J. Geophys. Res.
72
,
1599
1610
(
1967
).
3.
K. C.
Yeh
and
C. H.
Liu
, “
Acoustic-gravity waves in the upper atmosphere
,”
Rev. Geophys.
12
,
193
216
(
1974
).
4.
C.
Liu
, “
Acoustic gravity waves in the ionosphere/thermosphere system
,”
Adv. Space Res.
12
,
187
199
(
1992
).
5.
T. D.
Kaladze
,
O. A.
Pokhotelov
,
H. A.
Shah
,
M. I.
Khan
, and
L.
Stenflo
, “
Acoustic-gravity waves in the Earth’s ionosphere
,”
J. Atmos. Sol. Terr. Phys.
70
,
1607
1616
(
2008
).
6.
R. F.
Garcia
,
E.
Doornbos
,
S.
Bruinsma
, and
H.
Hebert
, “
Atmospheric gravity waves due to the Tohoku–Oki tsunami observed in the thermosphere by GOCE
,”
J. Geophys. Res. Atmos.
119
,
4498
4506
(
2014
).
7.
O. A.
Godin
,
N. A.
Zabotin
, and
T. W.
Bullett
, “
Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean
,”
Earth Planets Space
67
,
47
(
2015
).
8.
D.
Shaikh
,
P. K.
Shukla
, and
L.
Stenflo
, “
Spectral properties of acoustic gravity wave turbulence
,”
J. Geophys. Res. Atmos.
113
,
D06108
(
2008
).
9.
L.
Stenflo
, “
Acoustic solitary vortices
,”
Phys. Fluids
30
,
3297
3299
(
1987
).
10.
L.
Stenflo
, “
Equations describing solitary atmospheric waves
,”
Phys. Scr.
43
,
599
600
(
1991
).
11.
L.
Stenflo
, “
Generalized Lorenz equations for acoustic-gravity waves in the atmosphere
,”
Phys. Scr.
53
,
83
(
1996
).
12.
L.
Stenflo
, “
Nonlinear equations for acoustic gravity waves
,”
Phys. Lett. A
222
,
378
380
(
1996
).
13.
L.
Stenflo
and
P. K.
Shukla
, “
Nonlinear acoustic-gravity waves
,”
J. Plasma Phys.
75
,
841
847
(
2009
).
14.
P.
Axelsson
,
J.
Larsson
, and
L.
Stenflo
, “
Nonlinear interaction between acoustic gravity waves in a rotating atmosphere
,”
Nonlinear Process Geophys.
3
,
216
220
(
1996
).
15.
M. Y.
Yu
,
C. T.
Zhou
, and
C. H.
Lai
, “
The bifurcation characteristics of the generalized Lorenz equations
,”
Phys. Scr.
54
,
321
(
1996
).
16.
C.
Zhou
,
C. H.
Lai
, and
M. Y.
Yu
, “
Bifurcation behavior of the generalized Lorenz equations at large rotation numbers
,”
J. Math. Phys.
38
,
5225
5239
(
1997
).
17.
C.
Zhou
,
C. H.
Lai
, and
M. Y.
Yu
, “
Chaos, bifurcations and periodic orbits of the Lorenz–Stenflo system
,”
Phys. Scr.
55
,
394
402
(
1997
).
18.
R. A.
Van Gorder
, “
Shil’nikov chaos in the 4D Lorenz–Stenflo system modeling the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere
,”
Nonlinear Dyn.
72
,
837
851
(
2013
).
19.
J. C.
Xavier
and
P. C.
Rech
, “
Regular and chaotic dynamics of the Lorenz–Stenflo system
,”
Int. J. Bifurcat. Chaos
20
,
145
152
(
2010
).
20.
J.
Park
,
H.
Lee
,
Y. L.
Jeon
, and
J. J.
Baik
, “
Periodicity of the Lorenz–Stenflo equations
,”
Phys. Scr.
90
,
065201
(
2015
).
21.
P. C.
Rech
, “
On the dynamics in parameter planes of the Lorenz–Stenflo system
,”
Phys. Scr.
90
,
115201
(
2015
).
22.
P. C.
Rech
, “
Spiral organization of periodic structures in the Lorenz–Stenflo system
,”
Phys. Scr.
91
,
075201
(
2016
).
23.
L.
Gelens
,
S.
Beri
,
G.
Van der Sande
,
G.
Mezosi
,
M.
Sorel
,
J.
Danckaert
, and
G.
Verschaffelt
, “
Exploring multistability in semiconductor ring lasers: Theory and experiment
,”
Phys. Rev. Lett.
102
,
193904
(
2009
).
24.
N. S.
Nicolau
,
T. M.
Oliveira
,
A.
Hoff
,
H. A.
Albuquerque
, and
C.
Manchein
, “
Tracking multistability in the parameter space of a Chua’s circuit model
,”
Eur. Phys. J. B
92
,
106
(
2019
).
25.
G. C.
Layek
and
N. C.
Pati
, “
Organized structures of two bidirectionally coupled logistic maps
,”
Chaos
29
,
093104
(
2019
).
26.
N. C.
Pati
,
G. C.
Layek
, and
N.
Pal
, “
Bifurcations and organized structures in a predator–prey model with hunting cooperation
,”
Chaos Soliton. Fract.
140
,
110184
(
2020
).
27.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
,
167
218
(
2014
).
28.
J.
Aguirre
,
R. L.
Viana
, and
M. A.
Sanjuán
, “
Fractal structures in nonlinear dynamics
,”
Rev. Mod. Phys.
81
,
333
(
2009
).
29.
C.
Staquet
and
J.
Sommeria
, “
Internal gravity waves: From instabilities to turbulence
,”
Annu. Rev. Fluid Mech.
34
,
559
593
(
2002
).
30.
P.
Caillol
, “
Nonlinear internal waves in the upper atmosphere
,”
Geophys. Astrophys. Fluid Dyn.
99
,
271
308
(
2005
).
31.
M. V.
Kurgansky
, “
On the instability of finite-amplitude inertia-gravity waves
,”
Fluid Dyn. Res.
52
,
035503
(
2020
).
32.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
33.
S.
Banerjee
,
P.
Saha
, and
A. R.
Chowdhury
, “
Chaotic scenario in the Stenflo equations
,”
Phys. Scr.
63
,
177
(
2001
).
34.
G. C.
Layek
,
An Introduction to Dynamical Systems and Chaos
(
Springer
,
New Delhi
,
2015
).
35.
R. I.
Bogdanov
, “
Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues
,”
Funct. Anal. Appl.
9
,
144
145
(
1975
).
36.
F.
Takens
, “
Singularities of vector fields
,”
Publ. Math. IHES
43
,
47
100
(
1974
).
37.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer-Verlag
,
New York
,
1983
).
38.
G. C.
Layek
and
N. C.
Pati
, “
Period-bubbling transition to chaos in thermo-viscoelastic fluid systems
,”
Int. J. Bifurcat. Chaos
30
,
2030013
(
2020
).
39.
C.
Sparrow
,
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
(
Springer-Verlag
,
New York
,
1982
).
40.
G. C.
Layek
and
N. C.
Pati
, “
Bifurcations and chaos in convection taking non-Fourier heat-flux
,”
Phys. Lett. A
381
,
3568
3575
(
2017
).
41.
Z.
Wei
,
W.
Zhang
,
I.
Moroz
, and
N. V.
Kuznetsov
, “
Codimension one and two bifurcations in Cattaneo–Christov heat flux model
,”
Discrete Contin. Dyn. Syst. B
(
published online, 2021
).
42.
G. C.
Layek
and
N. C.
Pati
, “
Bifurcations and hyperchaos in magnetoconvection of non-Newtonian fluids
,”
Int. J. Bifurcat. Chaos
28
,
1830034
(
2018
).
43.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
You do not currently have access to this content.