We construct a mathematical model of non-linear vibration of a beam nanostructure with low shear stiffness subjected to uniformly distributed harmonic transversal load. The following hypotheses are employed: the nanobeams made from transversal isotropic and elastic material obey the Hooke law and are governed by the kinematic third-order approximation (Sheremetev–Pelekh–Reddy model). The von Kármán geometric non-linear relation between deformations and displacements is taken into account. In order to describe the size-dependent coefficients, the modified couple stress theory is employed. The Hamilton functional yields the governing partial differential equations, as well as the initial and boundary conditions. A solution to the dynamical problem is found via the finite difference method of the second order of accuracy, and next via the Runge–Kutta method of orders from two to eight, as well as the Newmark method. Investigations of the non-linear nanobeam vibrations are carried out with a help of signals (time histories), phase portraits, as well as through the Fourier and wavelet-based analyses. The strength of the nanobeam chaotic vibrations is quantified through the Lyapunov exponents computed based on the Sano–Sawada, Kantz, Wolf, and Rosenstein methods. The application of a few numerical methods on each stage of the modeling procedure allowed us to achieve reliable results. In particular, we have detected chaotic and hyper-chaotic vibrations of the studied nanobeam, and our results are authentic, reliable, and accurate.

1.
K. T.
Lau
,
C.
Gu
, and
D.
Hui
,
Composites Part B
37
,
425
(
2006
).
2.
V.
Saji
,
H.
Choe
, and
K.
Young
,
Int. J. Nano. Biomat.
3
,
119
(
2010
).
3.
K.
Kim
,
J.
Guo
,
X.
Xu
, and
D. L.
Fan
,
Small
11
,
4037
(
2015
).
4.
F.
Yang
,
A. C. M.
Chong
,
D. C. C.
Lam
, and
P.
Tong
,
Int. J. Solids Struct.
39
,
2731
(
2002
).
5.
R. D.
Mindlin
and
H. F.
Tiersten
,
Arch. Ration. Mech. Anal.
11
,
415
(
1962
).
6.
M. Z.
Nejad
,
A.
Hadi
, and
A.
Rastgoo
,
Int. J. Eng. Sci.
103
,
1
(
2016
).
7.
M.
Aydogdu
,
Physica E
41
,
1651
(
2009
).
8.
M. H.
Ghayesh
,
M.
Amabili
, and
H.
Farokhi
,
Int. J. Eng. Sci.
63
,
52
(
2013
).
9.
H.
Zeighampour
and
Y. T.
Beni
,
Appl. Math. Model.
39
,
5354
(
2015
).
10.
M. H.
Ghayesh
and
A.
Farajpour
,
Int. J. Eng. Sci.
129
,
84
(
2018
).
11.
A.
Apuzzo
,
R.
Barretta
,
M.
Canadija
,
L.
Feo
,
R.
Luciano
, and
F.
Marotti de Sciarra
,
Composites Part B
108
,
315
(
2017
).
12.
F.
Greco
and
R.
Luciano
,
Composites Part B
42
,
382
(
2011
).
13.
D.
Bruno
,
F.
Greco
, and
P.
Lonetti
,
Composites Part B
46
,
46
(
2013
).
14.
G.
Romano
and
R.
Barretta
,
Int. J. Eng. Sci.
115
,
14
(
2017
).
15.
M.
Asghari
,
M. T.
Ahmadian
,
M. H.
Kahrobiyan
, and
M.
Rahaeifard
,
Mater. Des.
31
,
2324
(
2010
).
16.
M.
Asghari
,
M. H.
Kahrobiyan
,
M.
Rahaeifard
, and
M. T.
Ahmadian
,
Mater. Des.
23
,
24
(
2010
).
17.
J. N.
Reddy
,
J. Mech. Phys. Solids
59
,
2382
(
2011
).
18.
W.
Chen
,
L.
Li
, and
M.
Xu
,
Compos. Struct.
93
,
2723
(
2011
).
19.
R.
Barretta
,
L.
Feo
, and
R.
Luciano
,
Composites Part B
72
,
217
(
2015
).
20.
R.
Barretta
,
L.
Feo
,
R.
Luciano
,
F.
Marotti de Sciarra
, and
R.
Penna
,
Composites Part B
100
,
208
(
2016
).
21.
N.
Shafiei
,
S. S.
Mirjavadi
,
B. M.
Afshari
,
S.
Rabby
, and
M.
Kazemi
,
Comput. Meth. Appl. Mech. Eng.
322
,
615
(
2017
).
22.
S.
Sahmani
and
M. M.
Aghdam
,
Compos. Struct.
179
,
77
(
2017
).
23.
A.
Apuzzo
,
R.
Barretta
,
R.
Luciano
,
F.
Marotti de Sciara
, and
R.
Penna
,
Composites Part B
123
,
105
(
2017
).
24.
R.
Barretta
,
S. A.
Faghidian
,
R.
Luciano
,
C. M.
Medaglia
, and
R.
Penna
,
Composites Part B
154
,
20
(
2018
).
25.
R.
Talebitooti
,
S. O.
Razazadeh
, and
A.
Amiri
,
Composites Part B
160
,
412
(
2019
).
26.
F. C.
Moon
and
P.
Holmes
,
J. Sound Vib.
65
,
275
(
1979
).
27.
F. C.
Moon
and
S. W.
Shaw
,
Int. J. Non-Linear Mech.
18
,
465
(
1983
).
28.
D. D.
Baran
,
Mech. Res. Commun.
21
,
189
(
1994
).
29.
A. C.
Luo
and
R. P.
Han
,
J. Sound Vib.
227
,
523
(
1999
).
30.
S.
Lenci
and
A. M.
Tarantino
,
Chaos Solitions Fractals
7
,
1601
(
1996
).
31.
S.
Lenci
,
G.
Menditto
, and
A. M.
Tarantino
,
Int. J. Non-Linear Mech.
34
,
615
(
1999
).
32.
D. M.
Santee
and
P. B.
Goncalves
,
Shock. Vib.
13
,
273
(
2006
).
33.
W.
Zhang
,
Chaos Solitons Fractals
26
,
731
(
2005
).
34.
W.
Zhang
,
F.
Wang
, and
M.
Yao
,
Nonlinear Dyn.
40
,
251
(
2005
).
35.
G.
Rega
,
V.
Settimi
, and
S.
Lenci
,
Nonlin. Dyn.
102
,
785
(
2020
).
36.
J.
Awrejcewicz
,
V. A.
Krysko
, and
A. F.
Vakakis
,
Nonlinear Dynamics of Continuous Elastic Systems
(
Springer
,
Berlin
,
2004
).
37.
J.
Awrejcewicz
and
V. A.
Krysko
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
15
,
1867
(
2005
).
38.
J.
Awrejcewicz
and
A. V.
Krysko
,
Math. Prob. Eng.
206
,
ID 071548
(
2006
).
39.
J.
Awrejcewicz
,
V. A.
Krysko
, and
A. V.
Krysko
,
Thermo-Dynamics of Plates and Shells
(
Springer
,
Berlin
,
2007
).
40.
J.
Awrejcewicz
,
A. V.
Krysko
,
M. V.
Zhigalov
,
O. A.
Saltykova
, and
V. A.
Krysko
,
Lat. Am. J. Sol. Struct.
5
,
319
(
2008
).
41.
J.
Awrejcewicz
,
A. V.
Krysko
,
J.
Mrozowski
,
O. A.
Saltykova
, and
M. V.
Zhigalov
,
Acta Mech. Sin.
27
,
36
(
2011
).
42.
J.
Awrejcewicz
,
V. A.
Krysko
,
O. A.
Saltykova
, and
B.
Yu
,
Chebotyrevskiy Nonlinear Stud.
18
,
329
(
2011
).
43.
J.
Awrejcewicz
,
O. A.
Saltykova
,
M. V.
Zhigalov
,
P.
Hagedorn
, and
V. A.
Krysko
,
Int. J. Aerosp. Lightweight Struct.
1
,
203
(
2011
).
44.
J.
Awrejcewicz
,
A. V.
Krysko
,
V.
Soldatov
, and
V. A.
Krysko
,
J. Comput. Nonlinear Dyn.
7
,
011005
(
2012
).
45.
A. V.
Krysko
,
J.
Awrejcewicz
,
I. E.
Kutepov
,
N. A.
Zagniboroda
,
V.
Dobriyan
, and
V. A.
Krysko
,
Chaos
34
,
043130
(
2014
).
46.
J.
Awrejcewicz
,
V. A.
Krysko
,
I. V.
Papkova
, and
A. V.
Krysko
,
Deterministic Chaos in One-Dimensional Continuous Systems
(
World Scientific
,
Singapore
,
2016
).
47.
J.
Awrejcewicz
and
A. V.
Krysko
,
Nonlinear Dyn.
85
,
2729
(
2016
).
48.
J.
Awrejcewicz
,
V. A.
Krysko
,
I. E.
Kutepov
,
N. A.
Zagniboroda
,
V.
Dobriyan
,
I. V.
Papkova
, and
A. V.
Krysko
,
Int. J. Non-Linear Mech.
76
,
29
(
2015
).
49.
J.
Awrejcewicz
,
A. V.
Krysko
,
S. P.
Pavlov
,
M. V.
Zhigalov
, and
V. A.
Krysko
,
Mech. Syst. Signal Process.
93
,
415
(
2017
).
50.
A. V.
Krysko
,
J.
Awrejcewicz
,
S. P.
Pavlov
,
M. V.
Zhigalov
, and
V. A.
Krysko
,
Commun. Nonlinear Sci. Numer. Simul.
50
,
16
(
2017
).
51.
V. A.
Krysko
,
J.
Awrejcewicz
,
M. V.
Zhigalov
,
V. F.
Kirichenko
, and
A. V.
Krysko
,
Mathematical Models of Higher Orders Shells in Temperature Fields
(
Springer
,
Berlin
,
2019
).
52.
J.
Awrejcewicz
and
V. A.
Krysko
,
Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members
(
Springer
,
New York
,
2020
).
53.
V. A.
Krysko
, Jr.
,
J.
Awrejcewicz
,
T. V.
Yakovleva
,
A. V.
Kirichenko
,
O.
Szymanowska
, and
V. A.
Krysko
,
Commun. Nonlinear Sci. Numer. Simul.
72
,
39
(
2019
).
54.
V. A.
Krysko
,
J.
Awrejcewicz
, and
G. G.
Narkaitis
,
Commun. Nonlinear Sci. Numer. Simul.
11
(
1
),
95
(
2006
).
55.
J.
Awrejcewicz
,
A. V.
Krysko
,
N. A.
Zagniboroda
,
V. V.
Dobriyan
, and
V. A.
Krysko
,
Nonlinear Dyn.
79
,
11
(
2015
).
56.
S.
Ilyas
,
F. K.
Alfosail
,
M. L. F.
Bellaredj
, and
M. I.
Younis
,
Nonlinear Dyn.
95
,
2263
(
2019
).
57.
A.
Bouchaala
,
A. H.
Nayfeh
,
N.
Jaber
, and
M. I.
Younis
,
J. Micromech. Microeng.
26
,
105009
(
2016
).
58.
T.
Rabenimanana
,
V.
Walter
,
N.
Kacem
,
P.
Le Moal
,
G.
Bourbon
, and
J.
Lardiès
,
Sens. Actuators A Phys.
295
,
643
(
2019
).
59.
A.
Behera
,
A.
Dangi
, and
R.
Pratap
,
Mat. Perform. Character.
7
,
4
(
2018
).
60.
K. E.
Grutter
,
M. I.
Davanço
,
K. C.
Balram
, and
K.
Srinivasan
,
APL Photonics
3
,
100801
(
2018
).
61.
A.
Ramini
,
N.
Alcheikh
,
S.
Ilyas
, and
M. I.
Younisa
,
AIP Adv.
6
,
095307
(
2016
).
62.
F. K.
Alfosail
,
A. Z.
Hajjaj
, and
M. I.
Younis
,
J. Comput. Nonlinear Dyn.
14
(
1
),
011001
(
2019
).
63.
R. B.
Richards
and
G. A.
Teters
,
Stability of Composite Shells
(
Zinatne
,
Riga
,
1974
).
64.
M. P.
Sheremetev
and
B. L.
Pelekh
,
Eng. J.
4
,
34
(
1964
).
65.
J.
Reddy
,
J. Appl. Mech.
51
,
745
(
1984
).
66.
T.
Kármán
,
Encykle D Math. Wiss.
4
,
311
(
1910
).
67.
D.
Gulick
,
Encounters with Chaos
(
McGraw-Hill
,
New York
,
1992
).
68.
M.
Sano
and
Y.
Sawada
,
Phys. Rev. Lett.
55
,
1082
(
1985
).
69.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
,
Physica
16D
,
285
(
1985
).
70.
H.
Kantz
,
Phys. Lett. A
185
,
77
(
1994
).
71.
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
de Luca
,
Physica D
65
,
117
(
1993
).
You do not currently have access to this content.