We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi, Watts–Strogatz, and Barabási–Albert types that present high, intermediate, and low values of these metrics. We also employ the total dissonance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchronization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high, intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear to favor phase locking, especially for the Similar dissonance pattern.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization
(
Cambridge University Press
,
Cambridge
,
2003
), Vol. 12.
2.
B.
Vickhoff
,
H.
Malmgren
,
R.
Åström
,
G.
Nyberg
,
M.
Engvall
,
J.
Snygg
,
M.
Nilsson
, and
R.
Jörnsten
, “
Music structure determines heart rate variability of singers
,”
Front. Psychol.
4
,
334
(
2013
).
3.
J.
Lacerda
,
C.
Freitas
, and
E.
Macau
, “
Multistable remote synchronization in a star-like network of non-identical oscillators
,”
Appl. Math. Model.
69
,
453
465
(
2019
).
4.
C.
Batista
,
J.
Szezech
, Jr.,
A.
Batista
,
E.
Macau
, and
R.
Viana
, “
Synchronization of phase oscillators with coupling mediated by a diffusing substance
,”
Physica A
470
,
236
248
(
2017
).
5.
A.
Loppini
,
A.
Capolupo
,
C.
Cherubini
,
A.
Gizzi
,
M.
Bertolaso
,
S.
Filippi
, and
G.
Vitiello
, “
On the coherent behavior of pancreatic beta cell clusters
,”
Phys. Lett. A
378
,
3210
3217
(
2014
).
6.
L.
Fortuna
and
M.
Frasca
, “
Experimental synchronization of single-transistor-based chaotic circuits
,”
Chaos
17
,
043118
(
2007
).
7.
P.
Protachevicz
,
R.
Borges
,
A.
Reis
,
F.
Borges
,
K.
Iarosz
,
I.
Caldas
,
E.
Lameu
,
E.
Macau
,
R.
Viana
,
I.
Sokolov
et al., “
Synchronous behaviour in network model based on human cortico-cortical connections
,”
Physiol. Meas.
39
,
074006
(
2018
).
8.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
9.
L. V.
Gambuzza
,
A.
Cardillo
,
A.
Fiasconaro
,
L.
Fortuna
,
J.
Gómez-Gardenes
, and
M.
Frasca
, “
Analysis of remote synchronization in complex networks
,”
Chaos
23
,
043103
(
2013
).
10.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Haraki (Springer-Verlag, Berlin, 1975), pp. 420–422.
11.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
(
2005
).
12.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
(
2001
).
13.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
14.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
15.
V. L.
Freitas
,
J. C.
Lacerda
, and
E. E.
Macau
, “
Complex networks approach for dynamical characterization of nonlinear systems
,”
Int. J. Bifurcation Chaos
29
,
1950188
(
2019
).
16.
X.
Yu
,
Z.
Jia
, and
X.
Jian
, “
Logistic mapping-based complex network modeling
,”
Appl. Math. (Irvine)
4
,
1558
(
2013
).
17.
L. A.
Magrini
,
M.
Oliveira Domingues
,
E. E.
Macau
, and
I. Z.
Kiss
, “
Synchronization in populations of electrochemical bursting oscillators with chaotic slow dynamics
,”
Chaos
31
,
053125
(
2021
).
18.
H.
Jeong
,
B.
Tombor
,
R.
Albert
,
Z. N.
Oltvai
, and
A.-L.
Barabási
, “
The large-scale organization of metabolic networks
,”
Nature
407
,
651
654
(
2000
).
19.
H.
Jeong
,
S. P.
Mason
,
A.-L.
Barabási
, and
Z. N.
Oltvai
, “
Lethality and centrality in protein networks
,”
Nature
411
,
41
42
(
2001
).
20.
R. V.
Sole
and
M.
Montoya
, “
Complexity and fragility in ecological networks
,”
Proc. R. Soc. London, Ser. B
268
,
2039
2045
(
2001
).
21.
J.
Camacho
,
R.
Guimerà
, and
L. A. N.
Amaral
, “
Robust patterns in food web structure
,”
Phys. Rev. Lett.
88
,
228102
(
2002
).
22.
J. C.
Lacerda
,
J.
Dias
,
C.
Freitas
, and
E.
Macau
, “
Synchronization of energy transmission networks at low voltage levels
,”
Appl. Math. Model.
89
,
627
635
(
2021
).
23.
J.
Grzybowski
,
E.
Macau
, and
T.
Yoneyama
, “
On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators
,”
Chaos
26
,
113113
(
2016
).
24.
J. C.
Lacerda
,
J.
Dias
,
C.
Freitas
, and
E.
Macau
, “
Vulnerability and stability of power grids modeled by second-order Kuramoto model: A mini review
,”
Eur. Phys. J. Spec. Top.
230
,
1
9
(
2021
).
25.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
491
(
2008
).
26.
C.
Freitas
,
E.
Macau
, and
R. L.
Viana
, “
Synchronization versus neighborhood similarity in complex networks of nonidentical oscillators
,”
Phys. Rev. E
92
,
032901
(
2015
).
27.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of small-world networks
,”
Nature
393
,
440
442
(
1998
).
28.
L. A. N.
Amaral
,
A.
Scala
,
M.
Barthelemy
, and
H. E.
Stanley
, “
Classes of small-world networks
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
11149
11152
(
2000
).
29.
H.
Zhang
,
W.
Zhang
, and
J.
Gao
, “
Synchronization of interconnected heterogeneous networks: The role of network sizes
,”
Sci. Rep.
9
,
1
12
(
2019
).
30.
M. M.
Danziger
,
I.
Bonamassa
,
S.
Boccaletti
, and
S.
Havlin
, “
Dynamic interdependence and competition in multilayer networks
,”
Nat. Phys.
15
,
178
185
(
2019
).
31.
C.
Parkinson
,
A. M.
Kleinbaum
, and
T.
Wheatley
, “
Similar neural responses predict friendship
,”
Nat. Commun.
9
,
332
(
2018
).
32.
K. A.
Urberg
,
S. M.
Degirmencioglu
, and
J. M.
Tolson
, “
Adolescent friendship selection and termination: The role of similarity
,”
J. Soc. Pers. Relat.
15
,
703
710
(
1998
).
33.
J. B.
Kupersmidt
,
M. E.
DeRosier
, and
C. P.
Patterson
, “
Similarity as the basis for children’s friendships: The roles of sociometric status, aggressive and withdrawn behavior, academic achievement and demographic characteristics
,”
J. Soc. Pers. Relat.
12
,
439
452
(
1995
).
34.
G. J.
Haselager
,
W. W.
Hartup
,
C. F.
Lieshout
, and
J. M. A.
Riksen-Walraven
, “
Similarities between friends and nonfriends in middle childhood
,”
Child Dev.
69
,
1198
1208
(
1998
).
35.
D. J.
Penn
and
W. K.
Potts
, “
The evolution of mating preferences and major histocompatibility complex genes
,”
Am. Nat.
153
,
145
164
(
1999
).
36.
W.
Jordan
and
M.
Bruford
, “
New perspectives on mate choice and the MHC
,”
Heredity
81
,
127
(
1998
).
37.
L.
Bernatchez
and
C.
Landry
, “
MHC studies in nonmodel vertebrates: What have we learned about natural selection in 15 years?
,”
J. Evol. Biol.
16
,
363
377
(
2003
).
38.
S.
Piertney
and
M.
Oliver
, “
The evolutionary ecology of the major histocompatibility complex
,”
Heredity
96
,
7
(
2006
).
39.
R. S.
Pinto
and
A.
Saa
, “
Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach
,”
Phys. Rev. E
92
,
062801
(
2015
).
40.
G. A.
Gottwald
, “
Model reduction for networks of coupled oscillators
,”
Chaos
25
,
053111
(
2015
).
41.
F.
Scafuti
,
T.
Aoki
, and
M.
di Bernardo
, “
Heterogeneity induces emergent functional networks for synchronization
,”
Phys. Rev. E
91
,
062913
(
2015
).
42.
A.
Pluchino
,
V.
Latora
, and
A.
Rapisarda
, “
Changing opinions in a changing world: A new perspective in sociophysics
,”
Int. J. Mod. Phys. C
16
,
515
531
(
2005
).
43.
A.
Pluchino
,
S.
Boccaletti
,
V.
Latora
, and
A.
Rapisarda
, “
Opinion dynamics and synchronization in a network of scientific collaborations
,”
Physica A
372
,
316
325
(
2006
).
44.
H.
Noorazar
, “
Recent advances in opinion propagation dynamics: A 2020 survey
,”
Eur. Phys. J. Plus
135
,
521
(
2020
).
45.
G.
Deffuant
,
D.
Neau
,
F.
Amblard
, and
G.
Weisbuch
, “
Mixing beliefs among interacting agents
,”
Adv. Complex Syst.
3
,
87
98
(
2000
).
46.
I. Z.
Kiss
,
Y.
Zhai
, and
J. L.
Hudson
, “
Emerging coherence in a population of chemical oscillators
,”
Science
296
,
1676
1678
(
2002
).
47.
B. C.
Daniels
, “Synchronization of globally coupled nonlinear oscillators: The rich behavior of the Kuramoto model,” Ohio Wesleyan Physics Department Essay, Vol. 7, 2005.
48.
P. J.
Van Laarhoven
and
E. H.
Aarts
, “Simulated annealing,” in Simulated Annealing: Theory and Applications (Springer, 1987), pp. 7–15.
49.
J.
Gómez-Gardenes
,
Y.
Moreno
, and
A.
Arenas
, “
Paths to synchronization on complex networks
,”
Phys. Rev. Lett.
98
,
034101
(
2007
).
50.
M. E.
Newman
, “
Mixing patterns in networks
,”
Phys. Rev. E
67
,
026126
(
2003
).
51.
R.
Noldus
and
P.
Van Mieghem
, “
Assortativity in complex networks
,”
J. Complex Netw.
3
,
507
542
(
2015
).
52.
S.
Wasserman
and
K.
Faust
,
Social Network Analysis: Methods and Applications
(
Cambridge University Press
,
Cambridge, UK
,
1994
), Vol. 8.
53.
J.
Saramäki
,
M.
Kivelä
,
J.-P.
Onnela
,
K.
Kaski
, and
J.
Kertesz
, “
Generalizations of the clustering coefficient to weighted complex networks
,”
Phys. Rev. E
75
,
027105
(
2007
).
54.
P.
Erdös
and
A.
Rényi
, “
On random graphs, I
,”
Publ. Math. (Debrecen)
6
,
290
297
(
1959
).
55.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
56.
L. D. F.
Costa
,
F. A.
Rodrigues
,
G.
Travieso
, and
P. R.
Villas Boas
, “
Characterization of complex networks: A survey of measurements
,”
Adv. Phys.
56
,
167
242
(
2007
).
You do not currently have access to this content.