In this study, we aimed to detect paroxysmal atrial fibrillation episodes before they occur so that patients can take precautions before putting their and others’ lives in potentially life-threatening danger. We used the atrial fibrillation prediction database, open data from PhysioNet, and assembled our process based on convolutional neural networks. Conventional heart rate variability features are calculated from time-domain measures, frequency-domain measures using power spectral density estimations, time-frequency-domain measures using wavelet transform, and nonlinear Poincaré plot measures. In addition, we also applied an alternative heart rate normalization, which gave promising results only in a few studies, before calculating these heart rate variability features. We used these features directly and their normalized versions using min–max normalization and z-score normalization methods. Thus, heart rate variability features extracted from six different combinations of these normalizations, in addition to no normalization cases, were applied to the convolutional neural network classifier. We tuned the classifiers’ hyperparameters using 90% of feature sets and tested the classifiers’ performances using 10% of feature sets. The proposed approach resulted in 87.76% accuracy, 91.30% precision, 80.04% recall, and 87.50% f1-score in heart rate variability with z-score feature normalization. When the heart rate normalization was also utilized, the suggested method gave 100% accuracy, 100% precision, 100% recall, and 100% f1-score in heart rate variability with z-score feature normalization. The proposed method with heart rate normalization and z-score normalization methods resulted in better classification performance than similar studies in the literature. By comparing the existing studies, we conclude that our approach provides a much better tool to determine a near-future paroxysmal atrial fibrillation episode. However, although the achieved benchmarks are impressive, we note that the approach needs to be supported by other studies and on other datasets before clinical trials.

1
K. M.
Ryder
and
E. J.
Benjamin
, “
Epidemiology and significance of atrial fibrillation
,”
Am. J. Cardiol.
84
,
131
138
(
1999
).
2
X.
Du
,
L.
Guo
,
S.
Xia
,
J.
Du
,
C.
Anderson
,
H.
Arima
,
M.
Huffman
,
Y.
Yuan
,
Y.
Zheng
,
S.
Wu
,
X.
Guang
,
X.
Zhou
,
H.
Lin
,
X.
Cheng
,
J.
Dong
, and
C.
Ma
, “
Atrial fibrillation prevalence, awareness and management in a nationwide survey of adults in China
,”
Heart
107
,
535
541
(
2021
).
3
G. B.
Moody
, 2001,
PAF Prediction Challenge Database
, published in PhysioNet, Version: 1.0.0,
4
G.
Hindricks
,
T.
Potpara
,
N.
Dagres
,
E.
Arbelo
,
J. J.
Bax
,
C.
Blomstrom-Lundqvist
,
G.
Boriani
,
M.
Castella
,
G.-A.
Dan
,
P. E.
Dilaveris
,
L.
Fauchier
,
G.
Filippatos
,
J. M.
Kalman
,
M.
La Meir
,
D. A.
Lane
,
J.-P.
Lebeau
,
M.
Lettino
,
G. Y. H.
Lip
,
F. J.
Pinto
,
G. N.
Thomas
,
M.
Valgimigli
,
I. C.
Van Gelder
,
B. P.
Van Putte
,
C. L.
Watkins
, and
ESC Scientific Document Group
, “
2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS)
,”
Eur. Heart J.
42
,
373
498
(
2020
).
5
M.
Mohebbi
and
H.
Ghassemian
, “
Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal
,”
Comput. Methods Programs Biomed.
105
,
40
49
(
2012
).
6
Y.
Isler
and
M.
Kuntalp
, “
Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure
,”
Comput. Biol. Med.
37
,
1502
1510
(
2007
).
7
A.
Soudani
and
M.
Almusallam
, “
Atrial fibrillation detection based on ECG-features extraction in WBSN
,”
Procedia Comput. Sci.
130
,
472
479
(
2018
).
8
U. R.
Acharya
,
H.
Fujita
,
O. S.
Lih
,
M.
Adam
,
J. H.
Tan
, and
C. K.
Chua
, “
Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
,”
Knowl. Based Syst.
132
,
62
71
(
2017
).
9
H.
Guruler
,
M.
Sahin
, and
A.
Ferikoglu
, “
Feature selection on single-lead ECG for obstructive sleep apnea diagnosis
,”
Turk. J. Electr. Eng. Comput. Sci.
22
,
465
478
(
2014
).
10
Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology
, “
Heart rate variability
,”
Circulation
93
,
1043
1065
(
1996
).
11
M. G.
Tsipouras
and
D. I.
Fotiadis
, “
Automatic arrhythmia detection based on time and time–frequency analysis of heart rate variability
,”
Comput. Methods Programs Biomed.
74
,
95
108
(
2004
).
12
M.-Y.
Lee
and
S.-N.
Yu
, “Multiscale sample entropy based on discrete wavelet transform for clinical heart rate variability recognition,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012).
13
J.
Park
,
S.
Lee
, and
M.
Jeon
, “
Atrial fibrillation detection by heart rate variability in Poincaré plot
,”
Biomed. Eng. Online
8
,
38
(
2009
).
14
Y.
Isler
, “
Discrimination of systolic and diastolic dysfunctions using multi-layer perceptron in heart rate variability analysis
,”
Comput. Biol. Med.
76
,
113
119
(
2016
).
15
A.
Narin
,
Y.
Isler
,
M.
Ozer
, and
M.
Perc
, “
Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability
,”
Physica A
509
,
56
65
(
2018
).
16
Y.
Isler
and
M.
Kuntalp
, “
Heart rate normalization in the analysis of heart rate variability in congestive heart failure
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
224
,
453
463
(
2009
).
17
C.
Maier
,
M.
Bauch
, and
H.
Dickhaus
, “Screening and prediction of paroxysmal atrial fibrillation by analysis of heart rate variability parameters,” in Computers in Cardiology 2001. Vol. 28 (Cat. No. 01CH37287) (IEEE, 2001).
18
G.
Schreier
,
P.
Kastner
, and
W.
Marko
, “An automatic ECG processing algorithm to identify patients prone to paroxysmal atrial fibrillation,” in Computers in Cardiology 2001. Vol. 28 (Cat. No. 01CH37287) (IEEE, 2001).
19
K. H.
Boon
,
M.
Khalil-Hani
,
M. B.
Malarvili
, and
C. W.
Sia
, “
Paroxysmal atrial fibrillation prediction method with shorter HRV sequences
,”
Comput. Methods Programs Biomed.
134
,
187
196
(
2016
).
20
M.
Surucu
,
Y.
Isler
, and
R.
Kara
, “Investigation of the effect of normalization techniques on discriminating patients with paroxysmal atrial fibrillation,” in 2nd International Conference of Applied Sciences, Engineering and Mathematics (IBU-ICASEM 2020, Skopje/North Macedonia, 2020).
21
T.
Thong
,
J.
McNames
,
M.
Aboy
, and
B.
Goldstein
, “
Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes
,”
IEEE Trans. Biomed. Eng.
51
,
561
569
(
2004
).
22
E.
Ros
,
S.
Mota
,
F. J.
Fernández
,
F. J.
Toro
, and
J. L.
Bernier
, “
ECG characterization of paroxysmal atrial fibrillation: Parameter extraction and automatic diagnosis algorithm
,”
Comput. Biol. Med.
34
,
679
696
(
2004
).
23
N.
Ozcan
and
M.
Kuntalp
, “Determining best hrv indices for paf screening using genetic algorithm,” in 10th International Conference on Electrical and Electronics Engineering (ELECO) (ELECO, 2017), pp. 1385–1388.
24
Y. V.
Chesnokov
,
A. V.
Holden
, and
H.
Zhang
, “Screening patients with paroxysmal atrial fibrillation (PAF) from non-PAF heart rhythm using HRV data analysis,” in 2007 Computers in Cardiology (IEEE, 2007).
25
A.
Martínez
,
R.
Alcaraz
, and
J. J.
Rieta
, “
Study on the p-wave feature time course as early predictors of paroxysmal atrial fibrillation
,”
Physiol. Meas.
33
,
1959
1974
(
2012
).
26
B.
Pourbabaee
,
M. J.
Roshtkhari
, and
K.
Khorasani
, “
Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
48
,
2095
2104
(
2018
).
27
M.
Surucu
,
Y.
Isler
, and
R.
Kara
, “
Diagnosis of paroxysmal atrial fibrillation from thirty-minute heart rate variability data using convolutional neural networks
,”
Turk. J. Electr. Eng. Comput. Sci.
29
,
2986
2900
(
2021
).
28
K. S.
Lynn
and
H. D.
Chiang
, “A two-stage solution algorithm for paroxysmal atrial fibrillation prediction,” in Computers in Cardiology 2001. Vol. 28 (Cat. No. 01CH37287) (IEEE, 2001).
29
M.
Surucu
,
Y.
Isler
, and
R.
Kara
, “Heart rate normalization on determining a paroxysmal atrial fibrillation attack,” in 3rd International Conference of Applied Sciences, Engineering and Mathematics, IBU-ICASEM 2021, Skopje/North Macedonia (IBU, 2021).
30
Y. V.
Chesnokov
, “
Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods
,”
Artif. Intell. Med.
43
,
151
165
(
2008
).
31
K. H.
Boon
,
M.
Khalil-Hani
, and
M. B.
Malarvili
, “
Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III
,”
Comput. Methods Programs Biomed.
153
,
171
184
(
2018
).
32
K. H.
Boon
,
M.
Khalil-Hani
, and
C. W.
Sia
, “Paroxysmal atrial fibrillation onset prediction using heart rate variability analysis and genetic algorithm for optimization,” in Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015) (Springer, Singapore, 2019), pp. 609–617.
33
O.
Balli
and
Y.
Kutlu
, “
Effect of deep learning feature inference techniques on respiratory sounds
,”
J. Intell. Syst. Appl.
3
,
134
137
(
2020
).
34
Y.
Camgozlu
and
Y.
Kutlu
, “
Examining the difference between image size, background color, gray picture and color picture in leave classification with deep learning
,”
J. Intell. Syst. Appl.
3
,
130
133
(
2020
).
35
G.
Altan
,
Y.
Kutlu
,
A. O.
Pekmezci
, and
S.
Nural
, “
Deep learning with 3D-second order difference plot on respiratory sounds
,”
Biomed. Signal Process. Control
45
,
58
69
(
2018
).
36
G.
Altan
,
Y.
Kutlu
, and
N.
Allahverdi
, “
Deep learning on computerized analysis of chronic obstructive pulmonary disease
,”
IEEE J. Biomed. Health Inform.
24
,
1344
1350
(
2020
).
37
G.
Moody
,
A.
Goldberger
,
S.
McClennen
, and
S.
Swiryn
, “Predicting the onset of paroxysmal atrial fibrillation: The computers in cardiology challenge 2001,” in Computers in Cardiology 2001. Vol.28 (Cat. No. 01CH37287) (IEEE, 2001).
38
R.
Seker
,
S.
Saliu
,
A.
Birand
, and
G.
Kudaiberdieva
, “
Validity test for a set of nonlinear measures for short data length with reference to short-term heart rate variability signal
,”
J. Syst. Integr.
10
,
41
53
(
2000
).
39
J.
Pan
and
W. J.
Tompkins
, “
A real-time QRS detection algorithm
,”
IEEE Trans. Biomed. Eng.
BME-32
,
230
236
(
1985
).
40
P.
Langley
,
D.
di Bernardo
,
J.
Allen
,
E.
Bowers
,
F. E.
Smith
,
S.
Vecchietti
, and
A.
Murray
, “Can paroxysmal atrial fibrillation be predicted?,” in Computers in Cardiology 2001. Vol. 28 (Cat. No. 01CH37287) (IEEE, 2001).
41
A. P.
Hallstrom
,
P. K.
Stein
,
R.
Schneider
,
M.
Hodges
,
G.
Schmidt
, and
K.
Ulm
, “
Structural relationships between measures based on heart beat intervals: Potential for improved risk assessment
,”
IEEE Trans. Biomed. Eng.
51
,
1414
1420
(
2004
).
42
G. G.
Berntson
,
J. T.
Bigger
, Jr.
,
D. L.
Eckberg
,
P.
Grossman
,
P. G.
Kaufmann
,
M.
Malik
,
H. N.
Nagaraja
,
S. W.
Porges
,
J. P.
Saul
,
P. H.
Stone
, and
M. W.
van der Molen
, “
Heart rate variability: Origins, methods, and interpretive caveats
,”
Psychophysiology
34
,
623
648
(
1997
).
43
G. D.
Clifford
and
L.
Tarassenko
, “
Quantifying errors in spectral estimates of HRV due to beat replacement and resampling
,”
IEEE Trans. Biomed. Eng.
52
,
630
638
(
2005
).
44
G. D.
Clifford
,
F.
Azuaje
, and
P. E.
McSharry
,
Advanced Methods and Tools for ECG Data Analysis
(
Artech House, Inc.
,
Norwood, MA
,
2006
).
45
E. J. M.
Weber
,
P. C. M.
Molenaar
, and
M. W.
van der Molen
, “
A nonstationarity test for the spectral analysis of physiological time series with an application to respiratory sinus arrhythmia
,”
Psychophysiology
29
,
55
62
(
1992
).
46
M. P.
Tarvainen
,
P. O.
Ranta-Aho
, and
P. A.
Karjalainen
, “
An advanced detrending method with application to HRV analysis
,”
IEEE Trans. Biomed. Eng.
49
,
172
175
(
2002
).
47
R. O.
Duda
,
P. E.
Hart
, and
D. G.
Stork
,
Pattern Classification
, 2nd ed. (
Wiley
,
New York
,
2001
).
48
N. R.
Lomb
, “
Least-squares frequency analysis of unequally spaced data
,”
Astrophys. Space Sci.
39
,
447
462
(
1976
).
49
J. D.
Scargle
, “
Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data
,”
Astrophys. J.
263
,
835
(
1982
).
50
P.
Laguna
,
G. B.
Moody
, and
R. G.
Mark
, “
Power spectral density of unevenly sampled data by least-square analysis: Performance and application to heart rate signals
,”
IEEE Trans. Biomed. Eng.
45
,
698
715
(
1998
).
51
P. W.
Kamen
and
A. M.
Tonkin
, “
Application of the Poincaré plot to heart rate variability: A new measure of functional status in heart failure
,”
Aust. N. Z. J. Med.
25
,
18
26
(
1995
).
52
P. W.
Kamen
,
H.
Krum
, and
A. M.
Tonkin
, “
Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans
,”
Clin. Sci.
91
,
201
208
(
1996
).
53
M.
Brennan
,
M.
Palaniswami
, and
P.
Kamen
, “
Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability?
,”
IEEE Trans. Biomed. Eng.
48
,
1342
1347
(
2001
).
54
F.
Marciano
,
M. L.
Migaux
,
D.
Acanfora
,
G.
Furgi
, and
F.
Rengo
, “Quantification of Poincaré maps for the evaluation of heart rate variability,” in Computers in Cardiology 1994 (IEEE Computer Society Press, 1994).
55
R. Q.
Quiroga
,
O. A.
Rosso
,
E.
Basar
, and
M.
Schurmann
, “
Wavelet entropy in event-related potentials: A new method shows ordering of EEG oscillations
,”
Biol. Cybern.
84
,
291
299
(
2001
).
56
E.
Sayilgan
,
Y.
Yuce
, and
Y.
Isler
, “
Evaluation of wavelet features selected via statistical evidence from steady-state visually evoked potentials to predict the stimulating frequency
,”
J. Fac. Eng. Archit. Gazi Univ.
36
,
593
(
2021
).
57
E.
Sayilgan
,
Y. K.
Yuce
, and
Y.
Isler
, “
Evaluation of mother wavelets on steady-state visually-evoked potentials for triple-command brain-computer interfaces
,”
Turk. J. Electr. Eng. Comput. Sci.
29
,
2263
2279
(
2021
).
58
J.
Schmidhuber
, “
Deep learning in neural networks: An overview
,”
Neural Netw.
61
,
85
117
(
2015
).
59
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
60
Y.
Bengio
,
A.
Courville
, and
P.
Vincent
, “
Representation learning: A review and new perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
35
,
1798
1828
(
2013
).
61
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, “
Dropout: A simple way to prevent neural networks from overfitting
,”
J. Mach. Learn. Res.
15
,
1929
1958
(
2014
).
62
J.
Bergstra
and
Y.
Bengio
, “
Random search for hyper-parameter optimization
,”
J. Mach. Learn. Res.
13
,
281
305
(
2012
).
63
A. H.
Abdi
,
C.
Luong
,
T.
Tsang
,
G.
Allan
,
S.
Nouranian
,
J.
Jue
,
D.
Hawley
,
S.
Fleming
,
K.
Gin
,
J.
Swift
,
R.
Rohling
, and
P.
Abolmaesumi
, “
Automatic quality assessment of echocardiograms using convolutional neural networks: Feasibility on the apical four-chamber view
,”
IEEE Trans. Med. Imaging
36
,
1221
1230
(
2017
).
64
Y.
Isler
,
A.
Narin
, and
M.
Ozer
, “
Comparison of the effects of cross-validation methods on determining performances of classifiers used in diagnosing congestive heart failure
,”
Meas. Sci. Rev.
15
,
196
201
(
2015
).
65
D.
Chicco
and
G.
Jurman
, “
The advantages of the Matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation
,”
BMC Genom.
21
,
6
(
2020
).
66
W.
Zong
,
R.
Mukkamala
, and
R. G.
Mark
, “A methodology for predicting paroxysmal atrial fibrillation based on ECG arrhythmia feature analysis,” in Computers in Cardiology 2001. Vol. 28 (Cat. No. 01CH37287) (IEEE, 2001).
67
H.
Costin
,
C.
Rotariu
, and
A.
Pasarica
, “Atrial fibrillation onset prediction using variability of ECG signals,” in 2013 8TH International Symposium on Advanced Topics in Electrical Engineering (ATEE) (IEEE, 2013).
You do not currently have access to this content.