In this work, we investigate the impact of mixed coupling on synchronization in a multiplex oscillatory network. The network mimics the neural–glial systems by incorporating interacting slow (“glial”) and fast (“neural”) oscillatory layers. Connections between the “glial” elements form a regular periodic structure, in which each element is connected to the eight other neighbor elements, whereas connections among “neural” elements are represented by Watts–Strogatz networks (from regular and small-world to random Erdös–Rényi graph) with a matching mean node degree. We find that the random rewiring toward small-world topology readily yields the dynamics close to that exhibited for a completely random graph, in particular, leading to coarse-graining of dynamics, suppressing multi-stability of synchronization regimes, and the onset of Kuramoto-type synchrony in both layers. The duration of transient dynamics in the system measured by relaxation times is minimized with the increase of random connections in the neural layer, remaining substantial only close to synchronization–desynchronization transitions. “Inhibitory” interactions in the “neural” subnetwork layer undermine synchronization; however, the strong coupling with the “glial” layer overcomes this effect.

1.
M.
Halassa
and
P.
Haydon
, “
Integrated brain circuits: Astrocytic networks modulate neuronal activity and behavior
,”
Annu. Rev. Physiol.
72
,
335
355
(
2010
).
2.
O.
Kanakov
,
S.
Gordleeva
,
A.
Ermolaeva
,
S.
Jalan
, and
A.
Zaikin
, “
Astrocyte-induced positive integrated information in neuron-astrocyte ensembles
,”
Phys. Rev. E
99
,
1012418
(
2019
).
3.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C.
del Genio
,
J.
Gómez-Gardeñes
,
M.
Romance
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
4.
S.
Makovkin
,
A.
Kumar
,
A.
Zaikin
,
S.
Jalan
, and
M.
Ivanchenko
, “
Multiplexing topologies and time scales: The gains and losses of synchrony
,”
Phys. Rev. E
96
,
052214
(
2017
).
5.
L.
Muller
,
A.
Destexhe
, and
M.
Rudolph-Lilith
, “
Brain networks: Small-worlds, after all?
,”
New J. Phys.
16
,
105004
(
2014
).
6.
S.
Makovkin
,
I.
Shkerin
,
S.
Gordleeva
, and
M.
Ivanchenko
, “
Astrocyte-induced intermittent synchronization of neurons in a minimal network
,”
Chaos, Solitons Fractals
138
,
109951
(
2020
).
7.
S.
Ghosh
and
S.
Jalan
, “
Emergence of chimera in multiplex networks
,”
Int. J. Bifurcation Chaos
26
,
1650120
(
2016
).
8.
J.
Sawicki
,
S.
Ghosh
,
S.
Jalan
, and
A.
Zakharoval
, “
Chimeras in multiplex networks: Interplay of inter- and intra-layer delays
,”
Front. Appl. Math. Stat.
5
,
19
(
2019
).
9.
A. D.
Kachhvah
,
X.
Dai
,
S.
Boccaletti
, and
S.
Jalan
, “
Interlayer Hebbian plasticity induces first-order transition in multiplex networks
,”
New J. Phys.
22
,
122001
(
2020
).
10.
A.
Kumar
,
S.
Jalan
, and
A. D.
Kachhvah
, “
Interlayer adaptation-induced explosive synchronization in multiplex networks
,”
Phys. Rev. Res.
2
,
023259
(
2020
).
11.
A.
Kumar
and
S.
Jalan
, “
Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks
,”
Chaos
3
,
041103
(
2021
).
12.
S.
Gordleeva
,
S.
Lebedev
,
M.
Rumyantseva
, and
V.
Kazantsev
, “
Astrocyte as a detector of synchronous events of a neural network
,”
JETP Lett.
107
,
440
(
2018
).
13.
E.
Pankratova
,
A.
Kalyakulina
,
S.
Stasenko
,
S.
Gordleeva
,
I.
Lazarevich
, and
V.
Kazantsev
, “
Neuronal synchronization enhanced by neuron-astrocyte interaction
,”
Nonlinear Dyn.
97
,
647
(
2019
).
14.
D. V.
Kasatkin
and
V. I.
Nekorkin
, “
Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings
,”
Chaos
28
,
093115
(
2018
).
15.
A. S.
Dmitrichev
,
D. S.
Shchapin
, and
V. I.
Nekorkin
, “
Cloning of chimera states in a large short-term coupled multiplex network of relaxation oscillators
,”
Front. Appl. Math. Stat.
5
,
9
(
2019
).
16.
E.
Niebur
,
H. G.
Schuster
,
D. M.
Kammen
, and
C.
Koch
, “
Oscillator-phase coupling for different two-dimensional network connectivities
,”
Phys. Rev. A
44
,
6895
(
1991
).
17.
H.
Sakaguchi
,
S.
Shinomoto
, and
Y.
Kuramoto
, “
Local and grobal self-entrainments in oscillator lattices
,”
Prog. Theor. Phys.
77
,
1005
(
1987
).
18.
H.
Hong
,
H.
Park
, and
M. Y.
Choi
, “
Collective phase synchronization in locally coupled limit-cycle oscillators
,”
Phys. Rev. E
70
,
045204
(
2004
).
19.
H.
Hong
,
H.
Chatè
,
H.
Park
, and
L.-H.
Tang
, “
Entrainment transition in populations of random frequency oscillators
,”
Phys. Rev. Lett.
99
,
184101
(
2007
).
20.
H.
Hong
,
M.-Y.
Choi
, and
B. J.
Kim
, “
Synchronization on small-world networks
,”
Phys. Rev. E
65
,
026139
(
2002
).
21.
T.
Ichinomiya
, “
Frequency synchronization in a random oscillator network
,”
Phys. Rev. E
70
,
026116
(
2004
).
22.
M.
Komarov
and
A.
Pikovsky
, “
Intercommunity resonances in multifrequency ensembles of coupled oscillators
,”
Phys. Rev. E
92
,
012906
(
2015
).
23.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
(
2002
).
24.
G. B.
Ermentrout
, “
The behavior of rings of coupled oscillators
,”
J. Math. Biol.
23
,
55
(
1985
).
25.
D. A. W. S. H.
Strogatz
and
M.
Girvan
, “
The size of sync basin
,”
Chaos
16
,
015103
(
2006
).
26.
P. F. C.
Tilles
,
F. F.
Ferreira
, and
H. A.
Cerdeira
, “
Multistable behavior above synchronization in a locally coupled Kuramoto model
,”
Phys. Rev. E
83
,
066206
(
2011
).
You do not currently have access to this content.