This paper is dedicated to exploring the global Mittag-Leffler stability of fractional-order complex-valued (CV) neural networks (NNs) with asynchronous time delays, which generates exponential stability of integer-order (IO) CVNNs. Here, asynchronous time delays mean that there are different time delays in different nodes. Two new inequalities concerning the product of two Mittag-Leffler functions and one novel lemma on a fractional derivative of the product of two functions are given with a rigorous theoretical proof. By utilizing three norms, several novel conditions are concluded to guarantee the global Mittag-Leffler stability and the existence and uniqueness of an equilibrium point. Considering the symbols of the matrix elements, the properties of an M-matrix are extended to the general cases, which introduces the excitatory and inhibitory impacts on neurons. Compared with IOCVNNs, exponential stability is the special case of our results, which means that our model and results are general. At last, two numerical experiments are carried out to explain the theoretical analysis.

1.
R.
Hilfer
,
Applications of Fractional Calculus in Physics
(
World Scientific
,
Singapore
,
2007
).
2.
O.
Heaviside
,
Electromagnetic Theory
(
Chelsea
,
New York
,
1971
).
3.
A.
Pratap
,
R.
Raja
,
C.
Sowmiya
,
O.
Bagdasar
,
J.
Cao
, and
G.
Rajchakit
, “
Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses
,”
Neural Netw.
103
,
128
141
(
2018
).
4.
H.
Li
and
Y.
Kao
, “
Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses
,”
Appl. Math. Comput.
361
,
22
31
(
2019
).
5.
Y.
Cao
,
Y.
Kao
,
J. H.
Park
, and
H.
Bao
, “
Global Mittag-Leffler stability of the delayed fractional coupled reaction-diffusion system on networks without strong connectedness
,”
IEEE Trans. Neural Netw. Learn. Syst.
32
,
1
11
(
2021
).
6.
Y.
Kao
and
H.
Li
, “
Asymptotical multistability and locally S-asymptotical ω-periodicity for the nonautonomous fractional-order neural networks with impulses
,”
Sci. China Inf. Sci.
64
,
112207
(
2020
).
7.
H.
Li
,
Y.
Kao
,
H.
Bao
, and
Y.
Chen
, “
Uniform stability of complex-valued neural networks of fractional-order with linear impulses and fixed time delays
,”
IEEE Trans. Neural Netw. Learn. Syst.
2021
,
1
11
.
8.
N.
Sene
, “
Mittag-Leffler input stability of fractional differential equations and its applications
,”
Discrete Contin. Dyn. Syst.-S
13
,
867
880
(
2020
).
9.
J.
Chen
,
Z.
Zeng
, and
P.
Jiang
, “
Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks
,”
Neural Netw.
51
,
1
8
(
2014
).
10.
H.
Li
and
Y.
Kao
, “
Synchronous stability of the fractional-order discrete-time dynamical network system model with impulsive couplings
,”
Neurocomputing
363
,
205
211
(
2019
).
11.
Y.
Kao
,
Y.
Li
,
J. H.
Park
, and
X.
Chen
, “
Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control
,”
IEEE Trans. Neural Netw. Learn. Syst.
32
,
2279
2284
(
2021
).
12.
X.
Yang
,
X.
Li
,
J.
Lu
, and
Z.
Cheng
, “
Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control
,”
IEEE Trans. Cybern.
50
,
4043
4052
(
2020
).
13.
S.
Huang
,
Y. Y.
Qiao
, and
G. C.
Wen
,
Real and Complex Clifford Analysis
(
Springer US
,
2006
).
14.
J.
Chen
,
B.
Chen
, and
Z.
Zeng
, “
Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays
,”
IEEE Trans. Syst. Man Cybern. Syst.
49
,
2519
2535
(
2019
).
15.
J.
Jian
and
P.
Wan
, “
Lagrange α-exponential stability and α-exponential convergence for fractional-order complex-valued neural networks
,”
Neural Netw.
91
,
1
10
(
2017
).
16.
H.
Bao
,
J. H.
Park
, and
J.
Cao
, “
Synchronization of fractional-order complex-valued neural networks with time delay
,”
Neural Netw.
81
,
16
28
(
2016
).
17.
R.
Saravanakumar
,
M. S.
Ali
,
J.
Cao
, and
H.
Huang
, “
H state estimation of generalised neural networks with interval time-varying delays
,”
Int. J. Syst. Sci.
47
,
3888
3899
(
2016
).
18.
M. S.
Ali
, “
Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete and distributed time varying delays
,”
Chin. Phys. B
23
,
060702
(
2014
).
19.
M. S.
Ali
,
R.
Saravanakumar
, and
Q.
Zhu
, “
Less conservative delay-dependent H control of uncertain neural networks with discrete interval and distributed time-varying delays
,”
Neurocomputing
166
,
84
95
(
2015
).
20.
M. S.
Ali
,
N.
Gunasekaran
, and
M. E.
Rani
, “
Robust stability of Hopfield delayed neural networks via an augmented L-K functional
,”
Neurocomputing
234
,
198
204
(
2017
).
21.
M. S.
Ali
,
G.
Narayanan
,
S.
Sevgen
,
V.
Shekher
, and
S.
Arik
, “
Global stability analysis of fractional-order fuzzy BAM neural networks with time delay and impulsive effects
,”
Commun. Nonlinear Sci. Numer. Simul.
78
,
104853
(
2019
).
22.
M. S.
Ali
,
P.
Balasubramaniam
, and
Q.
Zhu
, “
Stability of stochastic fuzzy BAM neural networks with discrete and distributed time-varying delays
,”
Int. J. Mach. Learn. Cybern.
8
,
263
273
(
2017
).
23.
M. S.
Ali
, “
Global asymptotic stability of stochastic fuzzy recurrent neural networks with mixed time-varying delays
,”
Chin. Phys. B
20
,
080201
(
2011
).
24.
S.
Arik
, “
An improved robust stability result for uncertain neural networks with multiple time delays
,”
Neural Netw.
54
,
1
10
(
2014
).
25.
J.
Chiasson
,
Z.
Tang
,
J.
Ghanem
,
C. T.
Abdallah
,
J. D.
Birdwell
,
M. M.
Hayat
, and
H.
Jerez
, “
The effect of time delays on the stability of load balancing algorithms for parallel computations
,”
IEEE Trans. Control Syst. Technol.
13
,
932
942
(
2005
).
26.
W.
Zhang
,
H.
Zhang
,
J.
Cao
,
F. E.
Alsaadi
, and
D.
Chen
, “
Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays
,”
Neural Netw.
110
,
186
198
(
2019
).
27.
R.
Rakkiyappan
,
J.
Cao
, and
G.
Velmurugan
, “
Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays
,”
IEEE Trans. Neural Netw. Learn. Syst.
26
,
84
97
(
2015
).
28.
X.
Liu
and
T.
Chen
, “
Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays
,”
IEEE Trans. Neural Netw. Learn. Syst.
27
,
593
606
(
2016
).
29.
I.
Podlubny
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
(
Academic Press
,
Cambridge, MA
,
1998
).
30.
Y.
Zhou
,
Basic Theory of Fractional Differential Equations
(
World Scientific Publishing Co. Pte. Ltd.
,
2014
).
31.
T.
Chen
, “
Global exponential stability of delayed Hopfield neural networks
,”
Neural Netw.
14
,
977
980
(
2001
).
32.
S. G.
Samko
,
A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon and Breach Science Publishers
,
1993
).
33.
V.
Lakshmikantham
and
S.
Leela
,
Theory of Fractional Dynamic Systems
(
Cambridge Scientific Publishers Ltd.
,
2009
).
34.
B.
Chen
and
J.
Chen
, “
Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks
,”
Neural Netw.
68
,
78
88
(
2015
).
35.
Y.
Wang
,
L.
Xie
, and
C. E.
de Souza
, “
Robust control of a class of uncertain nonlinear systems
,”
Syst. Control Lett.
19
,
139
149
(
1992
).
36.
S. S.
Dragomir
,
R. P.
Agarwal
, and
N. S.
Barnett
, “
Inequalities for beta and gamma functions via some classical and new integral inequalities
,”
J. Inequal. Appl.
5
,
103
165
(
2000
).
37.
J. G.
Wendel
, “
Note on the gamma function
,”
Am. Math. Mon.
55
,
563
564
(
1948
).
38.
N.
Aguila-Camacho
,
M. A.
Duarte-Mermoud
, and
J. A.
Gallegos
, “
Lyapunov functions for fractional order systems
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
2951
2957
(
2014
).
39.
J.
Hu
and
J.
Wang
, “
Global stability of complex-valued recurrent neural networks with time-delays
,”
IEEE Trans. Neural Netw. Learn. Syst.
23
,
853
865
(
2012
).
40.
T.
Chen
and
S. I.
Amari
, “
Stability of asymmetric Hopfield networks
,”
IEEE Trans. Neural Netw.
12
,
159
163
(
2001
).
You do not currently have access to this content.