For universality in the approach, it is customary to appropriately rescale problems to a single or a set of dimensionless equations with dimensionless quantities involved or to rescale the experimental setup to a suitable size for the laboratory conditions. Theoretical results and/or experimental findings are supposed to be valid for both the original and the rescaled problems. Here, however, we show in an analog computer model nonlinear system how the experimental results depend on the scale factor. This is because the intrinsic noise in the experimental setup remains constant as it is not affected by the scale factor. The particular case considered here offers a genuine noise-level effect in significantly altering a period-doubling cascade to chaos besides producing an expected truncated cascade. By monitoring with increasing value a significant parameter in the dynamics of the problem when searching for its solution, the system alien to the noise (or better said with a negligible noise level) follows a period-doubling cascade from period one to period two to period four to period eight and, eventually, chaos. However, if the intrinsic noise strength significantly enters the evolution, there appears a parallel sequence of period doublings different from the one found in the previous case.

1.
V. S.
Anishchenko
,
V.
Astakhov
,
T.
Vadivasova
,
A.
Neiman
, and
L.
Schimansky-Geier
,
Nonlinear Dynamics of Chaotic and Stochastic Systems Tutorial and Modern Developments
(
Springer Nature
,
2020
).
2.
V. S.
Anishchenko
and
W.
Ebeling
,
Z. Phys. B
81
,
445
(
1990
).
3.
H.
Herzel
and
W.
Ebeling
,
Biomed. Biochim. Acta
49
,
941
(
1990
).
4.
A.
Neiman
,
V.
Anishchenko
, and
J.
Kurths
,
Phys. Rev. E
49
,
3801
(
1994
).
5.
Yu. L.
Klimontovich
,
Statistical Physics
(
Harwood Publishers
,
New York
,
1986
).
6.
L.
Fortuna
,
A.
Buscarino
,
M.
Frasca
, and
C.
Famoso
,
Control of Imperfect Nonlinear Electromechanical Large Scale Systems: From Dynamics to Hardware Implementation
(
World Scientific
,
Singapore
,
2017
).
7.
M.
Bucolo
,
A.
Buscarino
,
C.
Famoso
,
L.
Fortuna
, and
M.
Frasca
,
Nonlinear Dyn.
98
,
2989
(
2019
).
8.
M.
Bucolo
,
A.
Buscarino
,
C.
Famoso
,
L.
Fortuna
, and
S.
Gagliano
,
IEEE Access
9
,
29573
(
2021
).
9.
A.
Seilacher
,
Syst. Zool.
22
,
451
(
1973
).
10.
G. E.
Hutchinson
,
Am. Scientist
69
,
161
(
1981
).
11.
F.
Jacob
,
The Possible and the Actual
(
University of Washington Press
,
Seattle
,
1982
).
12.
K.
Kiers
,
D.
Schmidt
, and
J. C.
Sprott
,
Am. J. Phys.
72
,
503
(
2004
).
13.
P.
Horowitz
and
W.
Hill
,
The Art of Electronics
, 2nd ed (
Cambridge University Press
,
New York
,
1989
).
14.
E.
del Rio
,
A.
Rodriguez-Lozano
, and
M. G.
Velarde
,
Rev. Sci. Instruments
63
,
4208
(
1992
).
15.
E.
del Rio
,
A.
Rodriguez-Lozano
, and
M. G.
Velarde
,
Chaos Soliton. Fract.
4
,
255
(
1994
).
16.
E.
del Rio
,
J. R.
Sanmartin
, and
O.
Lopez-Rebollal
,
Int. J. Bifurcation Chaos
8
,
2225
(
1998
).
17.
E.
del Rio
and
S.
Elaskar
,
Commun. Nonlinear Sci. Numer. Simulat.
64
,
122
(
2018
).
18.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
2008
).
You do not currently have access to this content.