Infinitesimal perturbations in various systems showing spatiotemporal chaos (STC) evolve following the power laws of the Kardar–Parisi–Zhang (KPZ) universality class. While universal properties beyond the power-law exponents, such as distributions and correlations and their geometry dependence, are established for random growth and related KPZ systems, the validity of these findings to deterministic chaotic perturbations is unknown. Here, we fill this gap between stochastic KPZ systems and deterministic STC perturbations by conducting extensive simulations of a prototypical STC system, namely, the logistic coupled map lattice. We show that the perturbation interfaces, defined by the logarithm of the modulus of the perturbation vector components, exhibit the universal, geometry-dependent statistical laws of the KPZ class despite the deterministic nature of STC. We demonstrate that KPZ statistics for three established geometries arise for different initial profiles of the perturbation, namely, point (local), uniform, and “pseudo-stationary” initial perturbations, the last being the statistically stationary state of KPZ interfaces given independently of the Lyapunov vector. This geometry dependence lasts until the KPZ correlation length becomes comparable to the system size. Thereafter, perturbation vectors converge to the unique Lyapunov vector, showing characteristic meandering, coalescence, and annihilation of borders of piece-wise regions that remain different from the Lyapunov vector. Our work implies that the KPZ universality for stochastic systems generally characterizes deterministic STC perturbations, providing new insights for STC, such as the universal dependence on initial perturbation and beyond.

1.
A. S.
Pikovsky
and
J.
Kurths
, “
Roughening interfaces in the dynamics of perturbations of spatiotemporal chaos
,”
Phys. Rev. E
49
,
898
901
(
1994
).
2.
A.
Pikovsky
and
A.
Politi
, “
Dynamic localization of Lyapunov vectors in spacetime chaos
,”
Nonlinearity
11
,
1049
(
1998
).
3.
T.
Kriecherbauer
and
J.
Krug
, “
A pedestrian’s view on interacting particle systems, KPZ universality and random matrices
,”
J. Phys. A: Math. Theor.
43
,
403001
(
2010
).
4.
I.
Corwin
, “
The Kardar–Parisi–Zhang equation and universality class
,”
Random Matrices: Theory Appl.
01
,
1130001
(
2012
).
5.
J.
Quastel
and
H.
Spohn
, “
The one-dimensional KPZ equation and its universality class
,”
J. Stat. Phys.
160
,
965
984
(
2015
).
6.
T.
Halpin-Healy
and
K. A.
Takeuchi
, “
A KPZ cocktail-shaken, not stirred
,”
J. Stat. Phys.
160
,
794
814
(
2015
).
7.
T.
Sasamoto
, “
The 1D Kardar–Parisi–Zhang equation: Height distribution and universality
,”
Prog. Theor. Exp. Phys.
2016
,
022A01
.
8.
H.
Spohn
, “The Kardar–Parisi–Zhang equation: A statistical physics perspective,” in Stochastic Processes and Random Matrices, Lecture Notes of the Les Houches Summer School, edited by G. Schehr, A. Altland, Y. V. Fyodorov, N. O’Connell, and L. F. Cugliandolo (Oxford University Press, Oxford, 2017), Vol. 104, pp. 177–227.
9.
K. A.
Takeuchi
, “
An appetizer to modern developments on the Kardar–Parisi–Zhang universality class
,”
Physica A
504
,
77
105
(
2018
).
10.
K.
Kaneko
, “
Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermittency
,”
Physica D
34
,
1
41
(
1989
).
11.
K.
Kaneko
,
Theory and Applications of Coupled Map Lattices
(
Wiley
,
Chichester
,
1993
).
12.
V. I.
Oseledec
, “
A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
,”
Trans. Mosc. Math. Soc.
19
,
197
231
(
1968
).
13.
J. P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
656
(
1985
).
14.
P. V.
Kuptsov
and
U.
Parlitz
, “
Theory and computation of covariant Lyapunov vectors
,”
J. Nonlinear Sci.
22
,
727
762
(
2012
).
15.
I. S.
Aranson
and
L.
Kramer
, “
The world of the complex Ginzburg–Landau equation
,”
Rev. Mod. Phys.
74
,
99
(
2002
).
16.
H.
Chaté
and
P.
Manneville
, “
Transition to turbulence via spatio-temporal intermittency
,”
Phys. Rev. Lett.
58
,
112
115
(
1987
).
17.
H.
Chaté
and
P.
Manneville
, “
Spatio-temporal intermittency in coupled map lattices
,”
Physica D
32
,
409
422
(
1988
).
18.
J.
Miller
and
D. A.
Huse
, “
Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled-map lattice
,”
Phys. Rev. E
48
,
2528
2535
(
1993
).
19.
P.
Marcq
,
H.
Chaté
, and
P.
Manneville
, “
Universal critical behavior in two-dimensional coupled map lattices
,”
Phys. Rev. Lett.
77
,
4003
4006
(
1996
).
20.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series (Cambridge University Press, New York, 2003).
21.
D.
Ruelle
, “
Large volume limit of the distribution of characteristic exponents in turbulence
,”
Commun. Math. Phys.
87
,
287
302
(
1982
).
22.
P.
Manneville
, “Liapounov exponents for the Kuramoto–Sivashinsky model,” in Macroscopic Modelling of Turbulent Flows, Lecture Notes in Physics, edited by U. Frisch, J. B. Keller, G. C. Papanicolaou, and O. Pironneau (Springer, Berlin, 1985), pp. 319–326.
23.
D. A.
Egolf
,
I. V.
Melnikov
,
W.
Pesch
, and
R. E.
Ecke
, “
Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection
,”
Nature
404
,
733
736
(
2000
).
24.
M.
Kardar
,
G.
Parisi
, and
Y.-C.
Zhang
, “
Dynamic scaling of growing interfaces
,”
Phys. Rev. Lett.
56
,
889
(
1986
).
25.
H.
Spohn
, “Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chains,” in Thermal Transport in Low Dimensions, Lecture Notes in Physics No. 921, edited by S. Lepri (Springer International Publishing, Cham, 2016), pp. 107–158.
26.
M.
Ljubotina
,
M.
Žnidarič
, and
T.
Prosen
, “
Kardar–Parisi–Zhang physics in the quantum Heisenberg magnet
,”
Phys. Rev. Lett.
122
,
210602
(
2019
).
27.
A.
Scheie
,
N. E.
Sherman
,
M.
Dupont
,
S. E.
Nagler
,
M. B.
Stone
,
G. E.
Granroth
,
J. E.
Moore
, and
D. A.
Tennant
, “
Detection of Kardar–Parisi–Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain
,”
Nat. Phys.
17
,
726
730
(
2021
).
28.
D.
Wei
,
A.
Rubio-Abadal
,
B.
Ye
,
F.
Machado
,
J.
Kemp
,
K.
Srakaew
,
S.
Hollerith
,
J.
Rui
,
S.
Gopalakrishnan
,
N. Y.
Yao
,
I.
Bloch
, and
J.
Zeiher
, “Quantum gas microscopy of Kardar–Parisi–Zhang superdiffusion,” arXiv:2107.00038 (2021).
29.
V. B.
Bulchandani
,
S.
Gopalakrishnan
, and
E.
Ilievski
, “Superdiffusion in spin chains,” arXiv:2103.01976 (2021).
30.
I. G.
Szendro
,
D.
Pazó
,
M. A.
Rodríguez
, and
J. M.
López
, “
Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map lattices
,”
Phys. Rev. E
76
,
025202
(
2007
).
31.
D.
Pazó
,
I. G.
Szendro
,
J. M.
López
, and
M. A.
Rodríguez
, “
Structure of characteristic Lyapunov vectors in spatiotemporal chaos
,”
Phys. Rev. E
78
,
016209
(
2008
).
32.
D.
Pazó
,
J. M.
López
, and
A.
Politi
, “
Universal scaling of Lyapunov-exponent fluctuations in space-time chaos
,”
Phys. Rev. E
87
,
062909
(
2013
).
33.
D.
Pazó
and
J. M.
López
, “
Characteristic Lyapunov vectors in chaotic time-delayed systems
,”
Phys. Rev. E
82
,
056201
(
2010
).
34.
M.
Prähofer
and
H.
Spohn
, “
Statistical self-similarity of one-dimensional growth processes
,”
Physica A
279
,
342
352
(
2000
).
35.
K. A.
Takeuchi
and
M.
Sano
, “
Universal fluctuations of growing interfaces: Evidence in turbulent liquid crystals
,”
Phys. Rev. Lett.
104
,
230601
(
2010
).
36.
K. A.
Takeuchi
,
M.
Sano
,
T.
Sasamoto
, and
H.
Spohn
, “
Growing interfaces uncover universal fluctuations behind scale invariance
,”
Sci. Rep.
1
,
34
(
2011
).
37.
K. A.
Takeuchi
and
M.
Sano
, “
Evidence for geometry-dependent universal fluctuations of the Kardar–Parisi–Zhang interfaces in liquid-crystal turbulence
,”
J. Stat. Phys.
147
,
853
890
(
2012
).
38.
Y. T.
Fukai
and
K. A.
Takeuchi
, “
Kardar–Parisi–Zhang interfaces with inward growth
,”
Phys. Rev. Lett.
119
,
030602
(
2017
).
39.
T.
Iwatsuka
,
Y. T.
Fukai
, and
K. A.
Takeuchi
, “
Direct evidence for universal statistics of stationary Kardar–Parisi–Zhang interfaces
,”
Phys. Rev. Lett.
124
,
250602
(
2020
).
40.
Y. T.
Fukai
and
K. A.
Takeuchi
, “
Kardar–Parisi–Zhang interfaces with curved initial shapes and variational formula
,”
Phys. Rev. Lett.
124
,
060601
(
2020
).
41.
A.-L.
Barabási
and
H.
Eugene Stanley
,
Fractal Concepts in Surface Growth
(
Cambridge University Press
,
New York
,
1995
).
42.
C. A.
Tracy
and
H.
Widom
, “
On orthogonal and symplectic matrix ensembles
,”
Commun. Math. Phys.
177
,
727
754
(
1996
).
43.
C. A.
Tracy
and
H.
Widom
, “
Level-spacing distributions and the Airy kernel
,”
Commun. Math. Phys.
159
,
151
174
(
1994
).
44.
J.
Baik
and
E. M.
Rains
, “
Limiting distributions for a polynuclear growth model with external sources
,”
J. Stat. Phys.
100
,
523
541
(
2000
).
45.
M.
Prähofer
and
H.
Spohn
, “
Universal distributions for growth processes in 1+1 dimensions and random matrices
,”
Phys. Rev. Lett.
84
,
4882
4885
(
2000
).
46.
Note χ1:=22/3χGOE-TW, where χGOE-TW is the standard GOE Tracy–Widom random variable.42 
47.
P. L.
Ferrari
and
H.
Spohn
, “
On time correlations for KPZ growth in one dimension
,”
Symmetry Integr. Geom.: Methods Appl.
12
,
074
(
2016
).
48.
J.
De Nardis
,
P.
Le Doussal
, and
K. A.
Takeuchi
, “
Memory and universality in interface growth
,”
Phys. Rev. Lett.
118
,
125701
(
2017
).
49.
K.
Johansson
, “
The two-time distribution in geometric last-passage percolation
,”
Probab. Theory Relat. Fields
175
,
849
895
(
2019
).
50.
K.
Johansson
and
M.
Rahman
, “
Multitime distribution in discrete polynuclear growth
,”
Commun. Pure Appl. Math.
74
,
2561
2627
(
2021
).
51.
Z.
Liu
, “Multi-point distribution of TASEP,” arXiv:1907.09876 (2019).
52.
I.
Corwin
,
J.
Quastel
, and
D.
Remenik
, “
Renormalization fixed point of the KPZ universality class
,”
J. Stat. Phys.
160
,
815
834
(
2015
).
53.
D.
Dauvergne
,
J.
Ortmann
, and
B.
Virág
, “The directed landscape,” arXiv:1812.00309 (2019).
54.
J.
Krug
,
P.
Meakin
, and
T.
Halpin-Healy
, “
Amplitude universality for driven interfaces and directed polymers in random media
,”
Phys. Rev. A
45
,
638
653
(
1992
).
55.
P. L.
Ferrari
and
R.
Frings
, “
Finite time corrections in KPZ growth models
,”
J. Stat. Phys.
144
,
1123
(
2011
).
56.
M.
Prähofer
and
H.
Spohn
, “
Exact scaling functions for one-dimensional stationary KPZ growth
,”
J. Stat. Phys.
115
,
255
279
(
2004
).
57.
J.
Quastel
and
D.
Remenik
, “Airy processes and variational problems,” in Topics in Percolative and Disordered Systems (Springer, New York, 2014), pp. 121–171.
58.
I.
Corwin
,
Z.
Liu
, and
D.
Wang
, “
Fluctuations of TASEP and LPP with general initial data
,”
Ann. Appl. Probab.
26
,
2030
2082
(
2016
).
59.
J.
Quastel
and
D.
Remenik
, “
How flat is flat in random interface growth?
,”
Trans. Amer. Math. Soc.
371
,
6047
6085
(
2019
).
60.
D.
Roy
and
R.
Pandit
, “
One-dimensional Kardar–Parisi–Zhang and Kuramoto-Sivashinsky universality class: Limit distributions
,”
Phys. Rev. E
101
,
030103
(
2020
).
61.
E.
Rodríguez-Fernández
and
R.
Cuerno
, “
Transition between chaotic and stochastic universality classes of kinetic roughening
,”
Phys. Rev. Res.
3
,
L012020
(
2021
).
62.
C. B.
Mendl
and
H.
Spohn
, “
Searching for the Tracy-Widom distribution in nonequilibrium processes
,”
Phys. Rev. E
93
,
060101
(
2016
).
63.
M.
Kulkarni
,
D. A.
Huse
, and
H.
Spohn
, “
Fluctuating hydrodynamics for a discrete Gross–Pitaevskii equation: Mapping onto the Kardar– Parisi–Zhang universality class
,”
Phys. Rev. A
92
,
043612
(
2015
).
64.
Theoretical curves that were available in https://www-m5.ma.tum.de/KPZ were used.
65.
F.
Bornemann
, “
On the numerical evaluation of Fredholm determinants
,”
Math. Comput.
79
,
871
915
(
2010
).
66.
Y. T.
Fukai
, “
Initial perturbation matters: Implications of geometry-dependent universal Kardar-Parisi-Zhang statistics for spatiotemporal chaos
,”
Zenodo
(
2021
).

Supplementary Material

You do not currently have access to this content.