Model simulations of El Niño–Southern Oscillation (ENSO) are usually evaluated by comparing them to observations using a multitude of metrics. However, this approach cannot provide an objective summary metric of model performance. Here, we propose that such an objective model evaluation should involve comparing the full joint probability density functions (pdf’s) of ENSO. For simplicity, ENSO state is defined here as sea surface temperature anomalies over the Niño 3 region and equatorial Pacific thermocline depth anomalies. We argue that all ENSO metrics are a function of the joint pdf, the latter fully specifying the underlying stochastic process. Unfortunately, there is a lack of methods to recover the joint ENSO pdf from climate models or observations. Here, we develop a data-driven stochastic model for ENSO that allows for an analytic solution of the non-Markov non-Gaussian cyclostationary ENSO pdf. We show that the model can explain relevant ENSO features found in the observations and can serve as an ENSO simulator. We demonstrate that the model can reasonably approximate ENSO in most GCMs and is useful at exploring the internal ENSO variability. The general approach is not limited to ENSO and could be applied to other cyclostationary processes.

1.
S.-I.
An
, “
A review of interdecadal changes in the nonlinearity of the El Niño-Southern Oscillation
,”
Theor. Appl. Climatol.
97
,
29
40
(
2009
).
2.
D.
Chen
,
M. A.
Cane
,
A.
Kaplan
,
S. E.
Zebiak
, and
D.
Huang
, “
Predictability of El Niño over the past 148 years
,”
Nature
428
,
733
736
(
2004
).
3.
H.-L.
Ren
and
F.-F.
Jin
, “
Niño indices for two types of ENSO
,”
Geophys. Res. Lett.
38
,
L04704
, https://doi.org/10.1029/2010GL046031 (
2011
).
4.
A.
Santoso
,
S.
McGregor
,
F.-F.
Jin
,
W.
Cai
,
M. H.
England
,
S.-I.
An
,
M. J.
McPhaden
, and
E.
Guilyardi
, “
Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections
,”
Nature
504
,
126
130
(
2013
).
5.
L.-C.
Hong
,
H.
Lin
, and
F.-F.
Jin
, “
A Southern Hemisphere booster of super El Niño
,”
Geophys. Res. Lett.
41
,
2142
2149
, https://doi.org/10.1002/2014GL059370 (
2014
).
6.
A.
Timmermann
,
S.-I.
An
,
J.-S.
Kug
,
F.-F.
Jin
,
W.
Cai
,
A.
Capotondi
,
K. M.
Cobb
,
M.
Lengaigne
,
M. J.
McPhaden
,
M. F.
Stuecker
,
K.
Stein
,
A. T.
Wittenberg
,
K.-S.
Yun
,
T.
Bayr
,
H.-C.
Chen
,
Y.
Chikamoto
,
B.
Dewitte
,
D.
Dommenget
,
P.
Grothe
,
E.
Guilyardi
,
Y.-G.
Ham
,
M.
Hayashi
,
S.
Ineson
,
D.
Kang
,
S.
Kim
,
W.
Kim
,
J.-Y.
Lee
,
T.
Li
,
J.-J.
Luo
,
S.
McGregor
,
Y.
Planton
,
S.
Power
,
H.
Rashid
,
H.-L.
Ren
,
A.
Santoso
,
K.
Takahashi
,
A.
Todd
,
G.
Wang
,
G.
Wang
,
R.
Xie
,
W.-H.
Yang
,
S.-W.
Yeh
,
J.
Yoon
,
E.
Zeller
, and
X.
Zhang
, “
El Niño-Southern Oscillation complexity
,”
Nature
559
,
535
545
(
2018
).
7.
UCAR, see https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni for “Niño SST Indices (Niño 1+3, 3, 3.4, 4; ONI and TMI),” (2021).
8.
F.-F.
Jin
, “
An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model
,”
J. Atmos. Sci.
54
,
811
829
(
1997
).
9.
S.-K.
Kim
and
S.-I.
An
, “
Untangling El Niño-La Niña asymmetries using a nonlinear coupled dynamic index
,”
Geophys. Res. Lett.
47
,
e2019GL085881
, https://doi.org/10.1029/2019GL085881 (
2020
).
10.
S.-W.
Yeh
,
J.-S.
Kug
, and
S.-I.
An
, “
Recent progress on two types of El Niño: Observations, dynamics, and future changes
,”
Asia-Pac. J. Atmos. Sci.
50
,
69
81
(
2014
).
11.
C.
Chen
,
M. A.
Cane
,
N.
Henderson
,
D. E.
Lee
,
D.
Chapman
,
D.
Kondrashov
, and
M. D.
Chekroun
, “
Diversity, nonlinearity, seasonality, and memory effect in ENSO simulation and prediction using empirical model reduction
,”
J. Clim.
29
,
1809
1830
(
2016
).
12.
J.
Berner
,
H. M.
Christensen
, and
P. D.
Sardeshmukh
, “
Does ENSO regularity increase in a warming climate?
,”
J. Clim.
33
,
1247
1259
(
2020
).
13.
F.-F.
Jin
,
H.-C.
Chen
,
S.
Zhao
,
M.
Hayashi
,
C.
Karamperidou
,
M.
Stuecker
, and
R.
Xie
, “Simple conceptual ENSO models,” in El Niño Southern Oscillation in a Changing Climate, edited by M. J. McPhaden, A. Santoso, and W. Cai (John Wiley & Sons, Hoboken, NJ, 2020).
14.
B.
Tian
,
H.-L.
Ren
,
F.-F.
Jin
, and
M. F.
Stuecker
, “
Diagnosing the representation and causes of the ENSO persistence barrier in CMIP5 simulations
,”
Clim. Dyn.
53
,
2147
2160
(
2019
).
15.
C.
Chen
,
M. A.
Cane
,
A. T.
Wittenberg
, and
D.
Chen
, “
ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change
,”
J. Clim.
30
,
775
801
(
2017
).
16.
Y. Y.
Planton
,
E.
Guilyardi
,
A. T.
Wittenberg
,
J.
Lee
,
P. J.
Gleckler
,
T.
Bayr
,
S.
McGregor
,
M. J.
McPhaden
,
S.
Power
,
R.
Roehrig
,
J.
Vialard
, and
A.
Voldoire
, “
Evaluating climate models with the CLIVAR 2020 ENSO metrics package
,”
Bull. Am. Meteorol. Soc.
102
,
E193
E217
(
2021
).
17.
A. F. Z.
Levine
and
F.-F.
Jin
, “
Noise-induced instability in the ENSO recharge oscillator
,”
J. Atmos. Sci.
67
,
529
542
(
2010
).
18.
K.
Stein
,
N.
Schneider
,
A.
Timmermann
, and
F.-F.
Jin
, “
Seasonal synchronization of ENSO events in a linear stochastic model
,”
J. Clim.
23
,
5629
5643
(
2010
).
19.
K.
Takahashi
,
C.
Karamperidou
, and
B.
Dewitte
, “
A theoretical model of strong and moderate El Niño regimes
,”
Clim. Dyn.
52
,
7477
7493
(
2019
).
20.
A. F. Z.
Levine
and
M. J.
McPhaden
, “
The annual cycle in ENSO growth rate as a cause of the spring predictability barrier
,”
Geophys. Res. Lett.
42
,
5034
5041
, https://doi.org/10.1002/2015GL064309 (
2015
).
21.
E.
Tziperman
,
L.
Stone
,
M. A.
Cane
, and
H.
Jarosh
, “
El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific Ocean-atmosphere oscillator
,”
Science
264
,
72
74
(
1994
).
22.
C.
Wang
, “
A review of ENSO theories
,”
Nat. Sci. Rev.
5
,
813
825
(
2018
).
23.
A. D.
Hall
,
J.
Skalin
, and
T.
Teräsvirta
, “
A nonlinear time series model of El Niño
,”
Environ. Model. Softw.
16
,
139
146
(
2001
).
24.
D.
Ubilava
and
C. G.
Helmers
, “
Forecasting ENSO with a smooth transition autoregressive model
,”
Environ. Model. Softw.
40
,
181
190
(
2013
).
25.
M.
Hong
,
R.
Zhang
,
D.
Wang
,
M.
Feng
,
Z.
Wang
, and
V. P.
Singh
, “
Reconstruction of a dynamical-statistical forecasting model of the ENSO index based on the improved self-memorization principle
,”
Deep Sea Res. Part I
101
,
14
26
(
2015
).
26.
W.
Moon
and
J. S.
Wettlaufer
, “
A unified nonlinear stochastic time series analysis for climate science
,”
Sci. Rep.
7
,
44228
(
2017
).
27.
D.
Kondrashov
,
S.
Kravtsov
,
A. W.
Robertson
, and
M.
Ghil
, “
A hierarchy of data-based ENSO models
,”
J. Clim.
18
,
4425
4444
(
2005
).
28.
C.
Torrence
, “
The annual cycle of persistence in the El Niño/Southern Oscillation
,”
Q. J. R. Meteorol. Soc.
124
,
1985
2004
(
1998
).
29.
D.
Mukhin
,
E.
Loskutov
,
A.
Mukhina
,
A.
Feigin
,
I.
Zaliapin
, and
M.
Ghil
, “
Predicting critical transitions in ENSO models. Part I: Methodology and simple models with memory
,”
J. Clim.
28
,
1940
1961
(
2015
).
30.
A.
Gavrilov
,
A.
Seleznev
,
D.
Mukhin
,
E.
Loskutov
,
A.
Feigin
, and
J.
Kurths
, “
Linear dynamical modes as new variables for data-driven ENSO forecast
,”
Clim. Dyn.
52
,
2199
2216
(
2019
).
31.
Y.-G.
Ham
,
J.-H.
Kim
, and
J.-J.
Luo
, “
Deep learning for multi-year ENSO forecasts
,”
Nature
573
,
568
572
(
2019
).
32.
J.
Yan
,
L.
Mu
,
L.
Wang
,
R.
Ranjan
, and
A. Y.
Zomaya
, “
Temporal convolutional networks for the advance prediction of ENSO
,”
Sci. Rep.
10
,
8055
(
2020
).
33.
B.
Mu
,
S.
Ma
,
S.
Yuan
, and
H.
Xu
, “Applying convolutional LSTM network to predict El Niño events: Transfer learning from the data of dynamical model and observation,” in ICEIEC 2020—Proceedings of 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (IEEE, 2020), pp. 215–219.
34.
S.
Talukdar
,
M.
Prakash
,
D.
Materassi
, and
M. V.
Salapaka
, “Reconstruction of networks of cyclostationary processes,” in Proceedings of the 2015 IEEE 54th Conference on Decision and Control (CDC 2015) (IEEE, 2015), pp. 783–788.
35.
R.
Olson
,
S.-I.
An
,
S.-K.
Kim
, and
Y.
Fan
, “
A new approach for discovering stochastic models behind data applied to El Niño–Southern Oscillation
,”
Sci. Rep.
11
,
2648
(
2021
).
36.
J. A.
Hoeting
,
D.
Madigan
,
A. E.
Raftery
, and
C. T.
Volinsky
, “
Bayesian model averaging: A tutorial
,”
Stat. Sci.
14
,
382
401
(
1999
).
37.
J. M.
Montgomery
and
B.
Nyhan
, “
Bayesian model averaging: Theoretical developments and practical applications
,”
Polit. Anal.
18
,
245
270
(
2010
).
38.
A. E.
Raftery
,
T.
Gneiting
,
F.
Balabdaoui
, and
M.
Polakowski
, “
Using Bayesian model averaging to calibrate forecast ensembles
,”
Mon. Weather Rev.
133
,
1155
1174
(
2005
).
39.
P.
Delicado
, “
Dimensionality reduction when data are density functions
,”
Comput. Stat. Data Anal.
55
,
401
420
(
2011
).
40.
B.
Huang
,
P. W.
Thorne
,
V. F.
Banzon
,
T.
Boyer
,
G.
Chepurin
,
J. H.
Lawrimore
,
M. J.
Menne
,
T. M.
Smith
,
R. S.
Vose
, and
H.-M.
Zhang
, “
Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons
,”
J. Clim.
30
,
8179
8205
(
2017
).
41.
B. S.
Giese
and
S.
Ray
, “
El Niño variability in simple ocean data assimilation (SODA), 1871-2008
,”
J. Geophys. Res.: Oceans
116
,
C02024
(
2011
).
42.
D.
Behringer
and
Y.
Xue
, “Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean,” in Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting (AMS, 2004).
43.
S.-K.
Kim
and
S.-I.
An
, “
Seasonal gap theory for ENSO phase locking
,”
J. Clim.
34
,
5621
(
2021
).
44.
National Academies of Science, Engineering and Medicine
,
Frontiers in Decadal Climate Variability: Proceedings of a Workshop
(
The National Academies Press
,
Washington, DC
,
2016
).
45.
S.-I.
An
,
E.
Tziperman
,
Y.
Okumura
, and
T.
Li
, “Irregularity and asymmetry,” in El Niño Southern Oscillation in a Changing Climate, edited by M. J. McPhaden, A. Santoso, and W. Cai (John Wiley & Sons, Inc., 2020).
46.
J.-S.
Kug
,
F.-F.
Jin
,
K. P.
Sooraj
, and
I.-S.
Kang
, “
State-dependent atmospheric noise associated with ENSO
,”
Geophys. Res. Lett.
35
,
L05701
, https://doi.org/10.1029/2007GL032017 (
2008
).
47.
C.
Jentsch
and
D. N.
Politis
, “
Covariance matrix estimation and linear process bootstrap for multivariate time series of possibly increasing dimension
,”
Ann. Stat.
43
,
1117
1140
(
2015
).
48.
R. H.
Shumway
and
D. S.
Stoffer
,
Time Series Analysis and Its Applications. With R Examples
, 2nd ed. (
Springer
,
New York
,
2006
).
49.
V.
Klemeš
, “
Physically based stochastic hydrologic analysis
,”
Adv. Hydroscience
11
,
285
356
(
1978
).

Supplementary Material

You do not currently have access to this content.