The dynamics of systems of interacting agents is determined by the structure of their coupling network. The knowledge of the latter is, therefore, highly desirable, for instance, to develop efficient control schemes, to accurately predict the dynamics, or to better understand inter-agent processes. In many important and interesting situations, the network structure is not known, however, and previous investigations have shown how it may be inferred from complete measurement time series on each and every agent. These methods implicitly presuppose that, even though the network is not known, all its nodes are. Here, we investigate the different problem of inferring network structures within the observed/measured agents. For symmetrically coupled dynamical systems close to a stable equilibrium, we establish analytically and illustrate numerically that velocity signal correlators encode not only direct couplings, but also geodesic distances in the coupling network within the subset of measurable agents. When dynamical data are accessible for all agents, our method is furthermore algorithmically more efficient than the traditional ones because it does not rely on matrix inversion.

1.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
2.
A.-L.
Barabási
,
Network Science
(
Cambridge University Press
,
Cambridge, England
,
2016
).
3.
M.
Hilbert
and
P.
Lopez
, “
The world’s technological capacity to store, communicate, and compute information
,”
Science
332
,
60
(
2011
).
4.
W.-X.
Wang
,
Y.-C.
Lai
, and
C.
Grebogi
, “
Data based identification and prediction of nonlinear and complex dynamical systems
,”
Phys. Rep.
644
,
1
76
(
2016
).
5.
I.
Brugere
,
B.
Gallagher
, and
T. Y.
Berger-Wolf
, “
Network structure inference, a survey: Motivations, methods, and applications
,”
ACM Comput. Surv.
51
(
2
),
24
(
2018
).
6.
V.
Sekara
,
A.
Stopczynski
, and
S.
Lehmann
, “
Fundamental structures of dynamic social networks
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
36
),
9977
9982
(
2016
).
7.
J.
Machowski
,
J. W.
Bialek
, and
J. R.
Bumby
,
Power System Dynamics
, 2nd ed. (
Wiley
,
Chichester, UK
,
2008
).
8.
S.
Backhaus
and
M.
Chertkov
, “
Getting a grip on the electrical grid
,”
Phys. Today
66
(
5
),
42
48
(
2013
).
9.
C.
Kirst
,
M.
Timme
, and
D.
Battaglia
, “
Dynamic information routing in complex networks
,”
Nat. Commun.
7
(
1
),
11061
(
2016
).
10.
M.
Tyloo
,
L.
Pagnier
, and
P.
Jacquod
, “
The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities
,”
Sci. Adv.
5
,
eaaw8359
(
2019
).
11.
D.
Bray
, “
Molecular networks: The top-down view
,”
Science
301
,
1864
1865
(
2003
).
12.
T. S.
Gardner
,
D.
di Bernardo
,
D.
Lorenz
, and
J. J.
Collins
, “
Inferring genetic networks and identifying compound mode of action via expression profiling
,”
Science
301
,
102
105
(
2003
).
13.
D.
Marbach
,
R. J.
Prill
,
T.
Schaffter
,
C.
Mattiussi
,
D.
Floreano
, and
G.
Stolovitzky
, “
Revealing strengths and weaknesses of methods for gene network inference
,”
Proc. Natl. Acad. Sci. U.S.A.
107
(
14
),
6286
6291
(
2010
).
14.
D.
Yu
,
M.
Righero
, and
L.
Kocarev
, “
Estimating topology of networks
,”
Phys. Rev. Lett.
97
,
188701
(
2006
).
15.
M.
Timme
, “
Revealing network connectivity from response dynamics
,”
Phys. Rev. Lett.
98
,
224101
(
2007
).
16.
D.
Yu
and
U.
Parlitz
, “
Driving a network to steady states reveals its cooperative architecture
,”
Europhys. Lett.
81
,
48007
(
2008
).
17.
Z.
Dong
,
T.
Song
, and
C.
Yuan
, “
Inference of gene regulatory networks from genetic perturbations with linear regression model
,”
PLoS One
8
(
12
),
e83263
(
2013
).
18.
F.
Basiri
,
J.
Casadiego
,
M.
Timme
, and
D.
Witthaut
, “
Inferring power-grid topology in the face of uncertainties
,”
Phys. Rev. E
98
,
012305
(
2018
).
19.
S.
Furutani
,
C.
Takano
, and
M.
Aida
, “
Network resonance method: Estimating network structure from the resonance of oscillation dynamics
,”
IEICE Trans. Commun.
E102.B
(
4
),
799
809
(
2019
).
20.
M.
Tyloo
and
R.
Delabays
, “
System size identification from sinusoidal probing in diffusive complex networks
,”
J. Phys. Complex.
2
(
2
),
025016
(
2021
).
21.
D.-T.
Hoang
,
J.
Jo
, and
V.
Periwal
, “
Data-driven inference of hidden nodes in networks
,”
Phys. Rev. E
99
,
042114
(
2019
).
22.
V. A.
Makarov
,
F.
Panetsos
, and
O.
de Febo
, “
A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings
,”
J. Neurosci. Methods
144
(
2
),
265
279
(
2005
).
23.
S. G.
Shandilya
and
M.
Timme
, “
Inferring network topology from complex dynamics
,”
New J. Phys.
13
,
013004
(
2011
).
24.
M. J.
Panaggio
,
M.-V.
Ciocanel
,
L.
Lazarus
,
C. M.
Topaz
, and
B.
Xu
, “
Model reconstruction from temporal data for coupled oscillator networks
,”
Chaos
29
,
103116
(
2019
).
25.
R.
Dahlhaus
,
M.
Eichler
, and
J.
Sandkühler
, “
Identification of synaptic connections in neural ensembles by graphical models
,”
J. Neurosci. Methods
77
,
93
107
(
1997
).
26.
K.
Sameshima
and
L. A.
Baccalá
, “
Using partial directed coherence to describe neuronal ensemble interactions
,”
J. Neurosci. Methods
94
,
93
103
(
1999
).
27.
M. E. J.
Newman
, “
Network structure from rich but noisy data
,”
Nat. Phys.
14
,
542
545
(
2018
).
28.
T. P.
Peixoto
, “
Network reconstruction and community detection from dynamics
,”
Phys. Rev. Lett.
123
,
128301
(
2019
).
29.
M. G.
Leguia
,
C. G. B.
Martínez
,
I.
Malvestio
,
A. T.
Campo
,
R.
Rocamora
,
Z.
Levnajić
, and
R. G.
Andrzejak
, “
Inferring directed networks using a rank-based connectivity measure
,”
Phys. Rev. E
99
,
012319
(
2019
).
30.
A.
Banerjee
,
J.
Pathak
,
R.
Roy
,
J. G.
Restrepo
, and
E.
Ott
, “
Using machine learning to assess short term causal dependence and infer network links
,”
Chaos
29
,
121104
(
2019
).
31.
J.
Ren
,
W.-X.
Wang
,
B.
Li
, and
Y.-C.
Lai
, “
Noise bridges dynamical correlation and topology in coupled oscillator networks
,”
Phys. Rev. Lett.
104
,
058701
(
2010
).
32.
W.-X.
Wang
,
J.
Ren
,
Y.-C.
Lai
, and
B.
Li
, “
Reverse engineering of complex dynamical networks in the presence of time-delayed interactions based on noisy time series
,”
Chaos
22
(
3
),
033131
(
2012
).
33.
E. S. C.
Ching
and
H. C.
Tam
, “
Reconstructing links in directed networks from noisy dynamics
,”
Phys. Rev. E
95
,
010301
(
2017
).
34.
Y.
Chen
,
S.
Wang
,
Z.
Zheng
,
Z.
Zhang
, and
G.
Hu
, “
Depicting network structures from variable data produced by unknown colored-noise driven dynamics
,”
Europhys. Lett.
113
(
1
),
18005
(
2016
).
35.
H. C.
Tam
,
E. S. C.
Ching
, and
P.-Y.
Lai
, “
Reconstructing networks from dynamics with correlated noise
,”
Physica A
502
,
106
122
(
2018
).
36.
N. G.
van Kampen
, “
Stochastic differential equations
,”
Phys. Rep.
24
(
3
),
171
(
1976
).
37.
R.
Delabays
,
M.
Tyloo
, and
Ph.
Jacquod
, “
The size of the sync basin revisited
,”
Chaos
27
,
103109
(
2017
).
38.
M.
Tyloo
,
R.
Delabays
, and
Ph.
Jacquod
, “
Noise-induced desynchronization and stochastic escape from equilibrium in complex networks
,”
Phys. Rev. E
99
,
062213
(
2019
).
39.
M.
Tyloo
,
T.
Coletta
, and
Ph.
Jacquod
, “
Robustness of synchrony in complex networks and generalized Kirchhoff indices
,”
Phys. Rev. Lett.
120
(
8
),
084101
(
2018
).
40.
H.
Ronellenfitsch
,
J.
Dunkel
, and
M.
Wilczek
, “
Optimal noise-canceling networks
,”
Phys. Rev. Lett.
121
,
208301
(
2018
).
41.
N. A.
Lynch
,
Distributed Algorithms
(
Morgan Kaufmann Publishers
,
1997
).
42.
R.
Hegselmann
and
U.
Krause
, “
Opinion dynamics and bounded confidence: Models, analysis and simulation
,”
J. Artif. Soc. Soc. Simul.
5
,
3
(
2002
).
43.
B.
Bamieh
,
M. R.
Jovanovic
,
P.
Mitra
, and
S.
Patterson
, “
Coherence in large-scale networks: Dimension-dependent limitations of local feedback
,”
IEEE Trans. Automat. Contr.
57
(
9
),
2235
2249
(
2012
).
44.
V.
Colizza
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Reaction–diffusion processes and metapopulation models in heterogeneous networks
,”
Nat. Phys.
3
,
276
(
2007
).
45.
D.
Brockmann
and
D.
Helbing
, “
The hidden geometry of complex, network-driven contagion phenomena
,”
Science
342
,
1337
(
2013
).
46.
J.
Goncalves
and
S.
Warnick
, “
Necessary and sufficient conditions for dynamical structure reconstruction of LTI networks
,”
IEEE Trans. Automat. Contr.
53
(
7
),
1670
1674
(
2008
).
47.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
(
6684
),
440
442
(
1998
).
48.
D.
Eroglu
,
M.
Tanzi
,
S.
van Strien
, and
T.
Pereira
, “
Revealing dynamics, communities, and criticality from data
,”
Phys. Rev. X
10
,
021047
(
2020
).
49.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
, “
Synchronization in complex oscillator networks and smart grids
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
6
),
2005
2010
(
2013
).
50.
R.
Delabays
,
T.
Coletta
, and
Ph.
Jacquod
, “
Multistability of phase-locking in equal-frequency Kuramoto models on planar graphs
,”
J. Math. Phys.
58
(
3
),
032703
(
2017
).

Supplementary Material

You do not currently have access to this content.