We investigate the dynamics of three identical three-dimensional ring synthetic genetic oscillators (repressilators) located in different cells and indirectly globally coupled by quorum sensing whereby it is meant that a mechanism in which special signal molecules are produced that, after the fast diffusion mixing and partial dilution in the environment, activate the expression of a target gene, which is different from the gene responsible for their production. Even at low coupling strengths, quorum sensing stimulates the formation of a stable limit cycle, known in the literature as a rotating wave (all variables have identical waveforms shifted by one third of the period), which, at higher coupling strengths, converts to complex tori. Further torus evolution is traced up to its destruction to chaos and the appearance of hyperchaos. We hypothesize that hyperchaos is the result of merging the saddle-focus periodic orbit (or limit cycle) corresponding to the rotating wave regime with chaos and present considerations in favor of this conclusion.

1.
O.
Rossler
, “
An equation for hyperchaos
,”
Phys. Lett. A
71
,
155
157
(
1979
).
2.
S.
Nikolov
and
S.
Clodong
, “
Hyperchaos–chaos–hyperchaos transition in modified Rössler systems
,”
Chaos, Solitons Fractals
28
,
252
263
(
2006
).
3.
Y.
Li
,
W. K.
Tang
, and
G.
Chen
, “
Hyperchaos evolved from the generalized Lorenz equation
,”
Int. J. Circuit Theory Appl.
33
,
235
251
(
2005
).
4.
X.
Wang
and
M.
Wang
, “
A hyperchaos generated from Lorenz system
,”
Physica A
387
,
3751
3758
(
2008
).
5.
S.
Pang
and
Y.
Liu
, “
A new hyperchaotic system from the Lü system and its control
,”
J. Comput. Appl. Math.
235
,
2775
2789
(
2011
).
6.
S.
Vaidyanathan
,
I.
Moroz
,
A.
Sambas
,
W.
Sanjaya
et al., “
A new 4D hyperchaotic two-wing system with a unique saddle-point equilibrium at the origin, its bifurcation analysis and circuit simulation
,”
J. Phys.: Conf. Ser.
1477
,
022016
(
2020
).
7.
N.
Stankevich
,
A.
Kuznetsov
,
E.
Popova
, and
E.
Seleznev
, “
Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator
,”
Nonlinear Dyn.
97
,
2355
2370
(
2019
).
8.
I.
Sataev
and
N.
Stankevich
, “
Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos
,”
Chaos
31
,
023140
(
2021
).
9.
T.
Kapitaniak
and
L. O.
Chua
, “
Hyperchaotic attractors of unidirectionally-coupled Chua’s circuits
,”
Int. J. Bifurcation Chaos
4
,
477
482
(
1994
).
10.
J.
Rasmussen
,
E.
Mosekilde
, and
C.
Reick
, “
Bifurcations in two coupled Rössler systems
,”
Math. Comput. Simul.
40
,
247
270
(
1996
).
11.
D.
Postnov
,
T.
Vadivasova
,
O.
Sosnovtseva
,
A.
Balanov
,
V.
Anishchenko
, and
E.
Mosekilde
, “
Role of multistability in the transition to chaotic phase synchronization
,”
Chaos
9
,
227
232
(
1999
).
12.
S.
Yanchuk
and
T.
Kapitaniak
, “
Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems
,”
Phys. Rev. E
64
,
056235
(
2001
).
13.
A.
Čenys
,
A.
Tamaševičius
,
A.
Baziliauskas
,
R.
Krivickas
, and
E.
Lindberg
, “
Hyperchaos in coupled Colpitts oscillators
,”
Chaos, Solitons Fractals
17
,
349
353
(
2003
).
14.
B.
Cannas
and
S.
Cincotti
, “
Hyperchaotic behaviour of two bi-directionally coupled Chuas circuits
,”
Int. J. Circuit Theory Appl.
30
,
625
637
(
2002
).
15.
T.
Kapitaniak
,
K.-E.
Thylwe
,
I.
Cohen
, and
J.
Wojewoda
, “
Chaos-hyperchaos transition
,”
Chaos, Solitons Fractals
5
,
2003
2011
(
1995
).
16.
N. V.
Stankevich
,
A.
Dvorak
,
V.
Astakhov
,
P.
Jaros
,
M.
Kapitaniak
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Chaos and hyperchaos in coupled antiphase driven Toda oscillators
,”
Regul. Chaotic Dyn.
23
,
120
126
(
2018
).
17.
V.
Anishchenko
and
S.
Nikolaev
, “
Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations
,”
Tech. Phys. Lett.
31
,
853
855
(
2005
).
18.
I. R.
Garashchuk
,
D. I.
Sinelshchikov
,
A. O.
Kazakov
, and
N. A.
Kudryashov
, “
Hyperchaos and multistability in the model of two interacting microbubble contrast agents
,”
Chaos
29
,
063131
(
2019
).
19.
I.
Ovsyannikov
and
L.
Shil’Nikov
, “
Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos
,”
Mat. USSR-Sb.
73
,
415
(
1992
).
20.
L. P.
Shilnikov
and
A.
Shilnikov
, “
Shilnikov bifurcation
,”
Scholarpedia
2
,
1891
(
2007
).
21.
A.
Gonchenko
,
S.
Gonchenko
,
A.
Kazakov
, and
D.
Turaev
, “
Simple scenarios of onset of chaos in three-dimensional maps
,”
Int. J. Bifurcation Chaos
24
,
1440005
(
2014
).
22.
P.
Perlikowski
,
S.
Yanchuk
,
M.
Wolfrum
,
A.
Stefanski
,
P.
Mosiolek
, and
T.
Kapitaniak
, “
Routes to complex dynamics in a ring of unidirectionally coupled systems
,”
Chaos
20
,
013111
(
2010
).
23.
M. B.
Elowitz
and
S.
Leibler
, “
A synthetic oscillatory network of transcriptional regulators
,”
Nature
403
,
335
338
(
2000
).
24.
H.
Niederholtmeyer
,
Z. Z.
Sun
,
Y.
Hori
,
E.
Yeung
,
A.
Verpoorte
,
R. M.
Murray
, and
S. J.
Maerkl
, “
Rapid cell-free forward engineering of novel genetic ring oscillators
,”
eLife
4
,
e09771
(
2015
).
25.
L.
Potvin-Trottier
,
N. D.
Lord
,
G.
Vinnicombe
, and
J.
Paulsson
, “
Synchronous long-term oscillations in a synthetic gene circuit
,”
Nature
538
,
514
517
(
2016
).
26.
O.
Boşe
,
A.
Kuznetsov
, and
R. A.
Pérez
, “
Existence of limit cycles in the repressilator equations
,”
Int. J. Bifurcation Chaos
19
,
4097
4106
(
2009
).
27.
S.
Müller
,
J.
Hofbauer
,
L.
Endler
,
C.
Flamm
,
S.
Widder
, and
P.
Schuster
, “
A generalized model of the repressilator
,”
J. Math. Biol.
53
,
905
937
(
2006
).
28.
D.
McMillen
,
N.
Kopell
,
J.
Hasty
, and
J.
Collins
, “
Synchronizing genetic relaxation oscillators by intercell signaling
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
679
684
(
2002
).
29.
J.
Garcia-Ojalvo
,
M. B.
Elowitz
, and
S. H.
Strogatz
, “
Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
10955
10960
(
2004
).
30.
F. K.
Balagaddé
,
H.
Song
,
J.
Ozaki
,
C. H.
Collins
,
M.
Barnet
,
F. H.
Arnold
,
S. R.
Quake
, and
L.
You
, “
A synthetic Escherichia coli predator–prey ecosystem
,”
Mol. Syst. Biol.
4
,
187
(
2008
).
31.
L.
You
,
R. S.
Cox
,
R.
Weiss
, and
F. H.
Arnold
, “
Programmed population control by cell–cell communication and regulated killing
,”
Nature
428
,
868
871
(
2004
).
32.
S.
Hennig
,
G.
Rödel
, and
K.
Ostermann
, “
Artificial cell-cell communication as an emerging tool in synthetic biology applications
,”
J. Biol. Eng.
9
,
13
(
2015
).
33.
T.
Danino
,
O.
Mondragón-Palomino
,
L.
Tsimring
, and
J.
Hasty
, “
A synchronized quorum of genetic clocks
,”
Nature
463
,
326
330
(
2010
).
34.
T.
Zhou
,
J.
Zhang
,
Z.
Yuan
, and
L.
Chen
, “
Synchronization of genetic oscillators
,”
Chaos
18
,
037126
(
2008
).
35.
E.
Ullner
,
A.
Koseska
,
J.
Kurths
,
E.
Volkov
,
H.
Kantz
, and
J.
García-Ojalvo
, “
Multistability of synthetic genetic networks with repressive cell-to-cell communication
,”
Phys. Rev. E
78
,
031904
(
2008
).
36.
E. H.
Hellen
and
E.
Volkov
, “
Flexible dynamics of two quorum-sensing coupled repressilators
,”
Phys. Rev. E
95
,
022408
(
2017
).
37.
E. H.
Hellen
and
E.
Volkov
, “
How to couple identical ring oscillators to get quasiperiodicity, extended chaos, multistability, and the loss of symmetry
,”
Commun. Nonlinear Sci. Numer. Simul.
62
,
462
479
(
2018
).
38.
E. H.
Hellen
and
E.
Volkov
, “
Emergence of multistability and strongly asymmetric collective modes in two quorum sensing coupled identical ring oscillators
,”
Chaos
30
,
121101
(
2020
).
39.
N.
Stankevich
and
E.
Volkov
, “
Evolution of quasiperiodicity in quorum-sensing coupled identical repressilators
,”
Chaos
30
,
043122
(
2020
).
40.
I.
Potapov
,
B.
Zhurov
, and
E.
Volkov
, “
Quorum sensing generated multistability and chaos in a synthetic genetic oscillator
,”
Chaos
22
,
023117
(
2012
).
41.
E.
Sánchez
,
D.
Pazó
, and
M. A.
Matías
, “
Experimental study of the transitions between synchronous chaos and a periodic rotating wave
,”
Chaos
16
,
033122
(
2006
).
42.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
43.
P.
Ashwin
,
G.
King
, and
J. W.
Swift
, “
Three identical oscillators with symmetric coupling
,”
Nonlinearity
3
,
585
(
1990
).
44.
M.
Yoshimoto
,
K.
Yoshikawa
, and
Y.
Mori
, “
Coupling among three chemical oscillators: Synchronization, phase death, and frustration
,”
Phys. Rev. E
47
,
864
(
1993
).
45.
E. I.
Volkov
and
M. N.
Stolyarov
, “
Temporal variability in a system of coupled mitotic timers
,”
Biol. Cybern.
71
,
451
459
(
1994
).
46.
D.
Ruwisch
,
M.
Bode
,
D.
Volkov
, and
E.
Volkov
, “
Collective modes of three coupled relaxation oscillators: The influence of detuning
,”
Int. J. Bifurcation Chaos
9
,
1969
1981
(
1999
).
47.
B.
Ermentrout
,
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students
(
SIAM
,
2002
).
48.
V.
Afraimovich
and
L. P.
Shilnikov
, “
Invariant two-dimensional tori, their breakdown and stochasticity
,”
Am. Math. Soc. Transl.
149
,
201
212
(
1991
).
49.
N.
Stankevich
,
A.
Kazakov
, and
E.
Volkov
, “Bistable tori and long transient dynamics in three coupled identical ring oscillators,” in 2020 4th Scientific School on Dynamics of Complex Networks and Their Application in Intellectual Robotics (DCNAIR) (IEEE, 2020), pp. 238–241.
50.
E.
Karatetskaia
,
A.
Shykhmamedov
, and
A.
Kazakov
, “
Shilnikov attractors in three-dimensional orientation-reversing maps
,”
Chaos
31
,
011102
(
2021
).
51.
A.
Mishra
,
S.
Leo Kingston
,
C.
Hens
,
T.
Kapitaniak
,
U.
Feudel
, and
S. K.
Dana
, “
Routes to extreme events in dynamical systems: Dynamical and statistical characteristics
,”
Chaos
30
,
063114
(
2020
).
52.
V. S.
Anishchenko
and
S. V.
Astakhov
, “
Poincaré recurrence theory and its applications to nonlinear physics
,”
Phys. Usp.
56
,
955
(
2013
).
You do not currently have access to this content.