We investigated here the influence of the lateral and normal Casimir force on the actuation dynamics between sinusoidal corrugated surfaces undergoing both normal and lateral displacements. The calculations were performed for topological insulators and phase change materials that are of high interest for device applications. The results show that the lateral Casimir force becomes stronger by increasing the material conductivity and the corrugations toward similar sizes producing wider normal separation changes during lateral motion. In a conservative system, bifurcation and Poincaré portrait analysis shows that larger but similar in size corrugations and/or higher material conductivity favor stable motion along the lateral direction. However, in the normal direction, the system shows higher sensitivity on the optical properties for similar in size corrugations leading to reduced stable operation for higher material conductivity. Furthermore, in non-conservative systems, the Melnikov function with the Poincaré portrait analysis was combined to probe the possible occurrence of chaotic motion. During lateral actuation, systems with more conductive materials and/or the same but high corrugations exhibit lower possibility for chaotic motion. By contrast, during normal motion, chaotic behavior leading to stiction of the moving components is more likely to occur for systems with more conductive materials and similar in magnitude corrugations.

1.
A. W.
Rodriguez
,
F.
Capasso
, and
S. G.
Johnson
, “
The Casimir effect in microstructured geometries
,”
Nat. Photonics
5
,
211
(
2011
).
2.
F.
Capasso
,
J. N.
Munday
,
D.
Iannuzzi
, and
H. B.
Chan
, “
Casimir forces and quantum electrodynamical torques: Physics and nanomechanics
,”
IEEE J. Sel. Top. Quantum Electron.
13
,
400
(
2007
).
3.
M.
Bordag
,
G. L.
Klimchitskaya
,
U.
Mohideen
, and
V. M.
Mostepanenko
,
Advances in the Casimir Effect
(
Oxford University Press
,
New York
,
2009
).
4.
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
, “
Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions
,”
Ann. Phys.
318
,
37
(
2005
);
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
, “
Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates
,”
Phys. Rev. D
75
,
077101
(
2007
).
5.
P.
Ball
, “
Fundamental physics: Feel the force
,”
Nature
447
,
77
(
2007
).
6.
H. B. G.
Casimir
, “
On the attraction between two perfectly conducting plates
,”
Proc. Kon. Nederland. Akad. Wetensch.
B51
,
793
(
1948
).
7.
E. M.
Lifshitz
, “
The theory of molecular attractive forces between solids
,”
Sov. Phys. JETP
2
,
73
(
1956
);
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
General theory of van der Waals forces
,”
Sov. Phys. Usp.
4
,
153
(
1961
).
8.
A.
Ashourvan
,
M. F.
Miri
, and
R.
Golestanian
, “
Noncontact rack and pinion powered by the lateral Casimir force
,”
Phys. Rev. Lett.
98
,
140801
(
2007
).
9.
M. F.
Miri
and
R.
Golestanian
, “
A frustrated nanomechanical device powered by the lateral Casimir force
,”
Appl. Phys. Lett.
92
,
113103
(
2008
).
10.
A.
Ashourvan
,
M. F.
Miri
, and
R.
Golestanian
, “
Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion
,”
Phys. Rev. E.
75
,
040103
(
2007
).
11.
F. M.
Serry
,
D.
Walliserand
, and
G. J.
Maclay
, “
The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS)
,”
J. Appl. Phys.
84
,
2501
(
1998
);
F. M.
Serry
,
D.
Walliser
, and
G. J.
Maclay
, “
The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS)
,”
J. Microelectromech. Syst.
4
,
193
(
1995
);
G.
Palasantzas
and
J. T. M.
DeHosson
, “
Phase maps of microelectromechanical switches in the presence of electrostatic and Casimir forces
,”
Phys. Rev. B
72
,
121409
(
2005
);
G.
Palasantzas
and
J. T. M.
DeHosson
, “
Pull-in characteristics of electromechanical switches in the presence of Casimir forces: Influence of self-affine surface roughness
,”
Phys. Rev. B
72
,
115426
(
2005
).
12.
F. W.
DelRio
,
M. P.
de Boer
,
J. A.
Knapp
,
E. D.
Reedy
, Jr.
,
P. J.
Clews
, and
M. L.
Dunn
, “
The role of van der Waals forces in adhesion of micromachined surfaces
,”
Nat. Mater.
4
,
629
(
2005
).
13.
H. G.
Craighead
, “
Nanoelectromechanical systems
,”
Science
290
,
1532
(
2000
).
14.
F.
Chen
,
G. L.
Klimchitskaya
,
V. M.
Mostepanenko
, and
U.
Mohideen
, “
Demonstration of optically modulated dispersion forces
,”
Opt. Express
15
,
4823
(
2007
);
[PubMed]
G.
Torricelli
,
I.
Pirozhenko
,
S.
Thornton
,
A.
Lambrecht
, and
C.
Binns
, “
Casimir force between a metal and a semimetal
,”
Europhys. Lett.
93
,
51001
(
2011
).
15.
S.
de Man
,
K.
Heeck
,
R. J.
Wijngaarden
, and
D.
Iannuzzi
, “
Halving the Casimir force with conductive oxides
,”
Phys. Rev. Lett.
103
,
040402
(
2009
).
16.
G.
Torricelli
,
P. J.
van Zwol
,
O.
Shpak
,
C.
Binns
,
G.
Palasantzas
,
B. J.
Kooi
,
V. B.
Svetovoy
, and
M.
Wuttig
, “
Switching Casimir forces with phase-change materials
,”
Phys. Rev. A
82
,
010101
(
2010
).
17.
G.
Torricelli
,
P. J.
van Zwol
,
O.
Shpak
,
G.
Palasantzas
,
V. B.
Svetovoy
,
C.
Binns
,
B. J.
Kooi
,
P.
Jost
, and
M.
Wuttig
, “
Casimir force contrast between amorphous and crystalline phases of AIST
,”
Adv. Funct. Mater.
22
,
3729
(
2012
).
18.
C.-C.
Chang
,
A. A.
Banishev
,
G. L.
Klimchitskaya
,
V. M.
Mostepanenko
, and
U.
Mohideen
, “
Reduction of the Casimir force from indium tin oxide film by UV treatment
,”
Phys. Rev. Lett.
107
,
090403
(
2011
).
19.
V. B.
Svetovoy
,
P. J.
van Zwol
,
G.
Palasantzas
, and
J. T. M.
DeHosson
, “
Optical properties of gold films and the Casimir force
,”
Phys. Rev. B.
77
,
035439
(
2008
);
G.
Bimonte
, “
Making precise predictions of the Casimir force between metallic plates via a weighted Kramers-Kronig transform
,”
Phys. Rev. A
83
,
042109
(
2011
).
20.
A.
Canaguier-Durand
,
P. A.
Maia Neto
,
A.
Lambrecht
, and
S.
Reynaud
, “
Thermal Casimir effect for Drude metals in the plane-sphere geometry
,”
Phys. Rev. A
82
,
012511
(
2010
).
21.
F.
Tajik
,
M.
Sedighi
,
M.
Khorrami
,
A. A.
Masoudi
, and
G.
Palasantzas
, “
Chaotic behavior in Casimir oscillators: A case study for phase-change materials
,”
Phys. Rev. E
96
,
042215
(
2017
);
[PubMed]
F.
Tajik
,
M.
Sedighi
, and
G.
Palasantzas
, “
Sensitivity on materials optical properties of single beam torsional Casimir actuation
,”
J. Appl. Phys.
121
,
174302
(
2017
).
22.
F.
Tajik
,
M.
Sedighi
,
M.
Khorrami
,
A. A.
Masoudi
,
H.
Waalkens
, and
G.
Palasantzas
, “
Dependence of chaotic behavior on optical properties and electrostatic effects in double-beam torsional Casimir actuation
,”
Phys. Rev. E
98
,
022210
(
2018
);
[PubMed]
F.
Tajik
,
M.
Sedighi
,
A. A.
Masoudi
,
H.
Waalkense
, and
G.
Palasantzas
, “
Sensitivity of chaotic behavior to low optical frequencies of a double beam torsional actuator
,”
Phys. Rev. E
100
,
012201
(
2019
).
[PubMed]
23.
Z.
Babamahdi
,
V. B.
Svetovoy
,
D. T.
Yimam
,
B. J.
Kooi
,
T.
Banerjee
,
J.
Moon
,
S. O.
Enache
,
M.
Stöhr
, and
G.
Palasantzas
, “
Casimir and electrostatic forces from Bi2Se3 thin films of varying thickness
,”
Phys. Rev. B
103
,
L161102
(
2021
).
24.
F.
Tajik
,
Z.
Babamahdi
,
M.
Sedighi
, and
G.
Palasantzas
, “
Nonlinear actuation of Casimir oscillators towards chaos: Comparison of topological insulators and metals
,”
Universe
7
,
123
(
2021
).
25.
M.
Antezza
,
L. P.
Pitaevskii
,
S.
Stringari
, and
V. B.
Svetovoy
, “
Casimir-Lifshitz force out of thermal equilibrium
,”
Phys. Rev. A
77
,
022901
(
2008
).
26.
J. M.
Obrecht
,
R. J.
Wild
,
M.
Antezza
,
L. P.
Pitaevskii
,
S.
Stringari
, and
E. A.
Cornell
, “
Measurement of the temperature dependence of the Casimir-Polder force
,”
Phys. Rev. Lett.
98
,
063201
(
2007
).
27.
M.
Antezza
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
New asymptotic behavior of the surface-atom force out of thermal equilibrium
,”
Phys. Rev. Lett.
95
,
113202
(
2005
).
28.
F.
Tajik
,
M.
Sedighi
,
Z.
Babamahdi
,
A. A.
Masoudi
,
H.
Waalkense
, and
G.
Palasantzas
, “
Dependence of non-equilibrium Casimir forces on material optical properties towards chaotic motion during device actuation
,”
Chaos
29
,
093126
(
2019
);
[PubMed]
F.
Tajik
,
M.
Sedighi
,
Z.
Babamahdi
,
A. A.
Masoudi
,
H.
Waalkense
, and
G.
Palasantzas
, “
Sensitivity of non-equilibrium Casimir forces on low frequency optical properties towards chaotic motion of microsystems
,”
Chaos
30
,
023108
(
2020
).
[PubMed]
29.
F.
Tajik
,
A. A.
Masoudi
,
M.
Sedighi
, and
G.
Palasantzas
, “
Chaotic motion due to lateral Casimir forces during nonlinear actuation dynamics
,”
Chaos
30
,
073101
(
2020
);
[PubMed]
V. B.
Svetovoy
and
G.
Palasantzas
, “
Influence of surface roughness on dispersion forces
,”
Adv. Colloid Interface Sci.
216
,
1
(
2015
).
[PubMed]
30.
H. C.
Chiu
,
G. L.
Klimchitskaya
,
V. N.
Marachevsky
,
V. M.
Mostepanenko
, and
U.
Mohideen
, “
Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory
,”
Phys. Rev. B
81
,
115417
(
2010
);
F.
Chen
,
U.
Mohideen
,
G. L.
Klimchitskaya
, and
V. M.
Mostepanenko
, “
Experimental and theoretical investigation of the lateral Casimir force between corrugated surfaces
,”
Phys. Rev. A
66
,
032113
(
2002
).
31.
R.
Golestanian
and
M.
Kardar
, “
Mechanical response of vacuum
,”
Phys. Rev. Lett.
78
,
3421
(
1997
);
R.
Golestanian
and
M.
Kardar
, “
Path-integral approach to the dynamic Casimir effect with fluctuating boundaries
,”
Phys. Rev. A.
58
,
1713
(
1998
);
T.
Eming
,
A.
Hanke
,
R.
Golestanian
, and
M.
Kardar
, “
Probing the strong boundary shape dependence of the Casimir force
,”
Phys. Rev. Lett.
87
,
260402
(
2001
).
[PubMed]
32.
W.
Broer
,
H.
Waalkens
,
V. B.
Svetovoy
,
J.
Knoester
, and
G.
Palasantzas
, “
Nonlinear actuation dynamics of driven Casimir oscillators with rough surfaces
,”
Phys. Rev. Appl.
4
,
054016
(
2015
).
33.
M. Z.
Hasan
and
C. L.
Kane
, “
Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
34.
J. E.
Moore
, “
The birth of topological insulators
,”
Nature
464
,
194
(
2010
).
35.
D.
Hsieh
,
D.
Qian
,
L.
Wray
,
Y.
Xia
,
Y.
Hor
,
R. J.
Cava
, and
M.
Hasan
, “
Topological Dirac insulator in a quantum spin Hall phase
,”
Nature
452
,
970
(
2008
).
36.
E.
Gadelmawla
,
M.
Koura
,
T.
Maksoud
,
I.
Elewa
, and
H.
Soliman
, “
Roughness parameters
,”
J. Mater. Process. Technol.
123
,
133
(
2002
).
37.
P. M.
Santos
and
E. N. A.
Júlio
, “
State-of-the-art review on roughness quantification methods for concrete surfaces
,”
Constr. Build. Mater.
38
,
912
(
2013
).
38.
O.
Degani
and
Y.
Nemirovsky
, “
Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions
,”
J. Microelectromech. Syst.
11
,
20
(
2002
).
39.
M.
Siewe
and
U. H.
Hegazy
, “
Homoclinic bifurcation and chaos control in MEMS resonators
,”
Appl. Math. Model.
35
,
5533
(
2011
).
40.
M. W.
Hirsch
,
S.
Smale
, and
R. L.
Devaney
,
Differential Equations, Dynamical Systems, and an Introduction to Chaos
(
Elsevier Academic Press
,
San Diego
,
CA
,
2004
).
You do not currently have access to this content.