Extensive clinical and experimental evidence links sleep–wake regulation and state of vigilance (SOV) to neurological disorders including schizophrenia and epilepsy. To understand the bidirectional coupling between disease severity and sleep disturbances, we need to investigate the underlying neurophysiological interactions of the sleep–wake regulatory system (SWRS) in normal and pathological brains. We utilized unscented Kalman filter based data assimilation (DA) and physiologically based mathematical models of a sleep–wake regulatory network synchronized with experimental measurements to reconstruct and predict the state of SWRS in chronically implanted animals. Critical to applying this technique to real biological systems is the need to estimate the underlying model parameters. We have developed an estimation method capable of simultaneously fitting and tracking multiple model parameters to optimize the reconstructed system state. We add to this fixed-lag smoothing to improve reconstruction of random input to the system and those that have a delayed effect on the observed dynamics. To demonstrate application of our DA framework, we have experimentally recorded brain activity from freely behaving rodents and classified discrete SOV continuously for many-day long recordings. These discretized observations were then used as the “noisy observables” in the implemented framework to estimate time-dependent model parameters and then to forecast future state and state transitions from out-of-sample recordings.

1.
K.
Wulff
,
S.
Gatti
,
J. G.
Wettstein
, and
R. G.
Foster
, “
Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease
,”
Nat. Rev. Neurosci.
11
,
589
599
(
2010
).
2.
D.
Pritchett
,
K.
Wulff
,
P. L.
Oliver
,
D. M.
Bannerman
,
K. E.
Davies
,
P. J.
Harrison
,
S. N.
Peirson
, and
R. G.
Foster
, “
Evaluating the links between schizophrenia and sleep and circadian rhythm disruption
,”
J. Neural Transm.
119
,
1061
1075
(
2012
).
3.
M.
Sedigh-Sarvestani
,
S. J.
Schiff
, and
B. J.
Gluckman
, “
Reconstructing mammalian sleep dynamics with data assimilation
,”
PLoS Comput. Biol.
8
,
1002788
(
2012
).
4.
S.
Datta
and
R. R.
MacLean
, “
Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: Reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence
,”
Neurosci. Biobehav. Rev.
31
,
775
824
(
2007
).
5.
C. B.
Saper
,
T. E.
Scammell
, and
J.
Lu
, “
Hypothalamic regulation of sleep and circadian rhythms
,”
Nature
437
,
1257
1263
(
2005
).
6.
K.
Sakai
, “
Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice
,”
Neuroscience
197
,
200
224
(
2011
).
7.
V.
Booth
,
I.
Xique
, and
C. G.
Diniz Behn
, “
One-dimensional map for the circadian modulation of sleep in a sleep-wake regulatory network model for human sleep
,”
SIAM J. Appl. Dyn. Syst.
16
,
1089
1112
(
2017
).
8.
M.
Fleshner
,
V.
Booth
,
D. B.
Forger
, and
C. G.
Diniz Behn
, “
Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
369
,
3855
3883
(
2011
).
9.
C. G.
Diniz Behn
and
V.
Booth
, “
Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network
,”
J. Neurophysiol.
103
,
1937
1953
(
2010
).
10.
Y.
Tamakawa
,
A.
Karashima
,
Y.
Koyama
,
N.
Katayama
, and
M.
Nakao
, “
A quartet neural system model orchestrating sleep and wakefulness mechanisms
,”
J. Neurophysiol.
95
,
2055
2069
(
2006
).
11.
M. J.
Rempe
,
J.
Best
, and
D.
Terman
, “
A mathematical model of the sleep/wake cycle
,”
J. Math. Biol.
60
,
615
644
(
2010
).
12.
D.
Simon
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
(
John Wiley & Sons, Inc.
,
2006
).
13.
S. J.
Julier
and
J. K.
Uhlmann
, “Unscented filtering and nonlinear estimation,” in Proceedings of the IEEE (IEEE, 2004).
14.
H. U.
Voss
,
J.
Timmer
, and
J.
Kurths
, “
Nonlinear dynamical system identification from uncertain and indirect measurements
,”
Int. J. Bifurcat. Chaos
14
,
1905
1933
(
2004
).
15.
R. W.
Mccarley
and
J. A.
Hobson
, “
Neuronal excitability modulation over the sleep cycle: A structural and mathematical model
,”
Science
189
,
58
60
(
1975
).
16.
K.
Ohno
and
T.
Sakurai
, “
Orexin neuronal circuitry: Role in the regulation of sleep and wakefulness
,”
Front. Neuroendocrinol.
29
,
70
87
(
2008
).
17.
T.
Porkka-Heiskanen
,
R. E.
Strecker
, and
R. W.
McCarley
, “
Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: An in vivo microdialysis study
,”
Neuroscience
99
,
507
517
(
2000
).
18.
Z.-L.
Huang
,
W.-M.
Qu
,
N.
Eguchi
,
J.-F.
Chen
,
M. A.
Schwarzschild
,
B. B.
Fredholm
,
Y.
Urade
, and
O.
Hayaishi
, “
Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine
,”
Nat. Neurosci.
8
,
858
859
(
2005
).
19.
S.
Deurveilher
and
K.
Semba
, “
Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: Implications for the circadian control of behavioural state
,”
Neuroscience
130
,
165
183
(
2005
).
20.
S. J.
Schiff
,
Neural Control Engineering
(
The MIT Press
,
2011
).
21.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
,
93
101
(
1944
).
22.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Indus. Appl. Math.
11
,
0111030
(
1963
).
23.
M. W.
Billard
,
F.
Bahari
,
J.
Kimbugwe
,
K. D.
Alloway
, and
B. J.
Gluckman
, “
The systemdrive: A multisite, multiregion microdrive with independent drive axis angling for chronic multimodal systems neuroscience recordings in freely behaving animals
,”
eNeuro
5
,
ENEURO.0261-18.2018
(
2018
).
24.
S.
Sunderam
,
N.
Chernyy
,
N.
Peixoto
,
J. P.
Mason
,
S. L.
Weinstein
,
S. J.
Schiff
, and
B. J.
Gluckman
, “
Improved sleep-wake and behavior discrimination using MEMS accelerometers
,”
J. Neurosci. Methods
163
,
373
383
(
2007
).
25.
C. G.
Behn
and
V.
Booth
, “
A fast-slow analysis of the dynamics of REM sleep
,”
SIAM J. Appl. Dyn. Syst.
11
,
212
242
(
2012
).
26.
B. A.
Toth
,
M.
Kostuk
,
C. D.
Meliza
,
D.
Margoliash
, and
H. D. I.
Abarbanel
, “
Dynamical estimation of neuron and network properties I: Variational methods
,”
Biol. Cybern.
105
,
217
237
(
2011
).
27.
X.
Hu
,
V.
Nenov
,
M.
Bergsneider
,
T. C.
Glenn
,
P.
Vespa
, and
N.
Martin
, “
Estimation of hidden state variables of the intracranial system using constrained nonlinear Kalman filters
,”
IEEE Trans. Biomed. Eng.
54
,
597
610
(
2007
).
28.
M.
Quach
,
N.
Brunel
, and
F.
D’alché-Buc
, “
Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference
,”
Bioinformatics
23
,
3209
3216
(
2007
).
29.
C.
Eberle
and
C.
Ament
, “
The unscented Kalman filter estimates the plasma insulin from glucose measurement
,”
Biosystems
103
,
67
72
(
2011
).
30.
G.
Ullah
and
S. J.
Schiff
, “
Assimilating seizure dynamics
,”
PLoS Comput. Biol.
6
,
e1000776
(
2010
).
31.
S. J.
Schiff
, “
Towards model-based control of Parkinson’s disease
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
368
,
2143
2146
(
2010
).
32.
D.
Freestone
,
P.
Aram
,
M.
Dewar
,
K.
Scerri
,
D.
Grayden
, and
V.
Kadirkamanathan
, “
A data-driven framework for neural field modeling
,”
NeuroImage
56
,
1043
1058
(
2011
).
33.
A. E.
Brayson
and
M.
Frazier
, “Smoothing for linear and nonlinear dynamics systems,” in Proceedings of the Optimum System Synthesis Conference (
Flight Control Laboratory Aeronautical Systems Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio
,
1963
), pp. 353–364.
34.
H. E.
Rauch
,
C. T.
Striebel
, and
F.
Tung
, “
Maximum likelihood estimates of linear dynamic systems
,”
AIAA J.
3
,
1445
1450
(
1965
).
35.
C. F. J.
Wu
, “
On the convergence properties of the EM algorithm
,”
Annal. Stat.
11
,
95
103
(
1983
).
36.
F.
Vaida
, “Parameter convergence for EM and MM algorithms,” Technical Report, 2005.
37.
J. A.
Jacquez
and
P.
Greif
, “
Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design
,”
Math. Biosci.
77
,
201
227
(
1985
).
38.
G.
Deco
,
V. K.
Jirsa
,
P. A.
Robinson
,
M.
Breakspear
, and
K.
Friston
, “
The dynamic brain: From spiking neurons to neural masses and cortical fields
,”
PLoS Comput. Biol.
4
,
e1000092
(
2008
).
39.
R. E.
Kalman
, “
A new approach to linear filtering and prediction problems
,”
Trans. ASME J. Basic Eng.
82
,
35
45
(
1960
).
40.
S. J.
Julier
, “The scaled unscented transformation,” in Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) (IEEE, 2002), Vol. 6, pp. 4555–4559.
41.
S. J.
Julier
and
J. K.
Uhlmann
, “Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations,” in Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) (IEEE, 2002), Vol. 2, pp. 887—-892.
42.
J. L.
Anderson
and
S. L.
Anderson
, “
A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
,”
Mon. Weather Rev.
127
,
2741
2758
(
1999
).
43.
T.
Miyoshi
, “
The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter
,”
Mon. Weather Rev.
139
,
1519
1535
(
2011
).
44.
R.
Kohn
and
C. F.
Ansley
, “
Filtering and smoothing algorithms for state space models
,”
Comput. Math. Appl.
18
,
515
528
(
1989
).
45.
M.
Briers
,
A.
Doucet
, and
S.
Maskell
, “
Smoothing algorithms for state-space models
,”
Ann. Inst. Stat. Math.
62
,
61
89
(
2010
).
46.
T.
Pei
,
L.
Jiachuan
,
Z.
Li
,
Y.
Zhou
, and
Y.
Choi
, “
A fixed-lag unscented Rauch-Tung-Striebel smoother for non-linear dynamic state estimation
,”
Int. J. Digital Content Technol. Appl.
7
,
769
777
(
2013
).
You do not currently have access to this content.