Paroxysms are sudden, unpredictable, short-lived events that abound in physiological processes and pathological disorders, from cellular functions (e.g., hormone secretion and neuronal firing) to life-threatening attacks (e.g., cardiac arrhythmia, epileptic seizures, and diabetic ketoacidosis). With the increasing use of personal chronic monitoring (e.g., electrocardiography, electroencephalography, and glucose monitors), the discovery of cycles in health and disease, and the emerging possibility of forecasting paroxysms, the need for suitable methods to evaluate synchrony—or phase-clustering—between events and related underlying physiological fluctuations is pressing. Here, based on examples in epilepsy, where seizures occur preferentially in certain brain states, we characterize different methods that evaluate synchrony in a controlled timeseries simulation framework. First, we compare two methods for extracting the phase of event occurrence and deriving the phase-locking value, a measure of synchrony: (M1) fitting cycles of fixed period-length vs (M2) deriving continuous cycles from a biomarker. In our simulations, M2 provides stronger evidence for cycles. Second, by systematically testing the sensitivity of both methods to non-stationarity in the underlying cycle, we show that M2 is more robust. Third, we characterize errors in circular statistics applied to timeseries with different degrees of temporal clustering and tested with different strategies: Rayleigh test, Poisson simulations, and surrogate timeseries. Using epilepsy data from 21 human subjects, we show the superiority of testing against surrogate time-series to minimize false positives and false negatives, especially when used in combination with M1. In conclusion, we show that only time frequency analysis of continuous recordings of a related bio-marker reveals the full extent of cyclical behavior in events. Identifying and forecasting cycles in biomedical timeseries will benefit from recordings using emerging wearable and implantable devices, so long as conclusions are based on conservative statistical testing.

1.
D. J.
Durgan
and
M. E.
Young
, “
The cardiomyocyte circadian clock: Emerging roles in health and disease
,”
Circ. Res.
106
,
647
658
(
2010
).
2.
N.
Black
,
A.
D’Souza
,
Y.
Wang
,
H.
Piggins
,
H.
Dobrzynski
,
G.
Morris
, and
M. R.
Boyett
, “
Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms
,”
Heart Rhythm
16
,
298
307
(
2019
).
3.
J. E.
Muller
,
P. L.
Ludmer
,
S. N.
Willich
,
G. H.
Tofler
,
G.
Aylmer
,
I.
Klangos
, and
P. H.
Stone
, “
Circadian variation in the frequency of sudden cardiac death
,”
Circulation
75
,
131
138
(
1987
).
4.
M.
Langdon-Down
and
W. R.
Brain
, “
Time of day in relation to convulsions in epilepsy
,”
Lancet
213
,
1029
1032
(
1929
).
5.
G. M.
Griffiths
and
J. T.
Fox
, “
Rhythm in epilepsy
,”
Lancet
232
,
409
416
(
1938
).
6.
M. O.
Baud
,
J. K.
Kleen
,
E. A.
Mirro
,
J. C.
Andrechak
,
D.
King-Stephens
,
E. F.
Chang
, and
V. R.
Rao
, “
Multi-day rhythms modulate seizure risk in epilepsy
,”
Nat. Commun.
9
,
88
(
2018
).
7.
P. J.
Karoly
,
D. M.
Goldenholz
,
D. R.
Freestone
,
R. E.
Moss
,
D. B.
Grayden
,
W. H.
Theodore
, and
M. J.
Cook
, “
Circadian and circaseptan rhythms in human epilepsy: A retrospective cohort study
,”
Lancet Neurol.
17
,
977
985
(
2018
).
8.
M. J.
Burish
,
Z.
Chen
,
S. H.
Yoo
, “
Cluster headache is in part a disorder of the circadian system
,”
JAMA
75
(7),
783
784
(
2018
).
9.
B.
Frauscher
,
N.
von Ellenrieder
,
T.
Ferrari-Marinho
,
M.
Avoli
,
F.
Dubeau
, and
J.
Gotman
, “
Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves
,”
Brain
138
,
1629
1641
(
2015
).
10.
D. C.
Spencer
,
F. T.
Sun
,
S. N.
Brown
,
B. C.
Jobst
,
N. B.
Fountain
,
V. S.
Wong
,
E. A.
Mirro
, and
M.
Quigg
, “
Circadian and ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term ambulatory intracranial monitoring
,”
Epilepsia
57
,
1495
1502
(
2016
).
11.
P. J.
Karoly
,
D. R.
Freestone
,
R.
Boston
,
D. B.
Grayden
,
D.
Himes
,
K.
Leyde
,
U.
Seneviratne
,
S.
Berkovic
,
T.
O’Brien
, and
M. J.
Cook
, “
Interictal spikes and epileptic seizures: Their relationship and underlying rhythmicity
,”
Brain
139
,
1066
1078
(
2016
).
12.
M. J.
Cook
,
A.
Varsavsky
,
D.
Himes
,
K.
Leyde
,
S. F.
Berkovic
,
T.
O’Brien
, and
I.
Mareels
, “
The dynamics of the epileptic brain reveal long-memory processes
,”
Front. Neurol.
5
,
217
(
2014
).
13.
V. R.
Rao
,
M. G.
Leguia
,
T. K.
Tcheng
, and
M. O.
Baud
, “
Cues for seizure timing
,”
Epilepsia
(published online,
2020
).
14.
N. A.
Bercel
, “
The periodic features of some seizure states
,”
Ann. N.Y. Acad. Sci.
117
,
555
562
(
1964
).
15.
M. O.
Baud
,
A.
Ghestem
,
J.-J.
Benoliel
,
C.
Becker
, and
C.
Bernard
, “
Endogenous multidien rhythm of epilepsy in rats
,”
Exp. Neurol.
315
,
82
87
(
2019
).
16.
M. I.
Maturana
,
C.
Meisel
,
K.
Dell
,
P. J.
Karoly
,
W.
D’Souza
,
D. B.
Grayden
,
A. N.
Burkitt
,
P.
Jiruska
,
J.
Kudlacek
,
J.
Hlinka
et al., “
Critical slowing down as a biomarker for seizure susceptibility
,”
Nat. Commun.
11
,
1
12
(
2020
).
17.
M. G.
Leguia
,
R. G.
Andrzejak
,
C.
Rummel
,
J.
Fan
,
E.
Mirro
,
T.
Tcheng
,
V.
Rao
, and
M. O.
Baud
, “Seizure cycles in focal epilepsy,”
JAMA Neurology
(to be published).
18.
G.
Cornelissen
, “
Cosinor-based rhythmometry
,”
Theor. Biol. Med. Model.
11
,
289
(
2014
).
19.
S. J.
Schiff
,
A.
Aldroubi
,
M.
Unser
, and
S.
Sato
, “
Fast wavelet transformation of eeg
,”
Electroencephalogr. Clin. Neurophysiol.
91
,
442
455
(
1994
).
20.
T.
Schreiber
and
A.
Schmitz
, “
Surrogate time series
,”
Physica D
142
,
346
382
(
2000
).
21.
M.
Unser
and
A.
Aldroubi
, “
A review of wavelets in biomedical applications
,”
Proc. IEEE
84
,
626
638
(
1996
).
22.
R. G.
Andrzejak
,
F.
Mormann
,
T.
Kreuz
,
C.
Rieke
,
A.
Kraskov
,
C. E.
Elger
, and
K.
Lehnertz
, “
Testing the null hypothesis of the nonexistence of a preseizure state
,”
Phys. Rev. E
67
,
010901
(
2003
).
23.
Z.
Li
,
J.
Wang
, and
J.
Han
, “
Eperiodicity: Mining event periodicity from incomplete observations
,”
IEEE Trans. Knowl. Data Eng.
27
,
1219
1232
(
2014
).
24.
J.
Gotman
and
M.
Marciani
, “
Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients
,”
Ann. Neurol.
17
,
597
603
(
1985
).
25.
M.
Avoli
,
G.
Biagini
, and
M.
De Curtis
, “
Do interictal spikes sustain seizures and epileptogenesis?
,”
Epilepsy Curr.
6
,
203
207
(
2006
).
26.
K. J.
Staley
and
F. E.
Dudek
, “
Interictal spikes and epileptogenesis
,”
Epilepsy Curr.
6
,
199
202
(
2006
).
27.
T.
Proix
,
W.
Truccolo
,
M. G.
Leguia
,
D.
King-Stephens
,
V. R.
Rao
, and
M. O.
Baud
, “Forecasting seizure risk in adults with focal epilepsy, a development and validation study,”
Lancet Neurol.
(published online, 2020).
28.
N. I.
Fisher
,
Statistical Analysis of Circular Data
(
Cambridge University Press
,
1995
).
29.
G.
Buzsáki
, “
Theta oscillations in the hippocampus
,”
Neuron
33
,
325
340
(
2002
).
30.
F.
Cacucci
,
C.
Lever
,
T. J.
Wills
,
N.
Burgess
, and
J.
O’Keefe
, “
Theta-modulated place-by-direction cells in the hippocampal formation in the rat
,”
J. Neurosci.
24
,
8265
8277
(
2004
).
31.
P. J.
Karoly
,
M. J.
Cook
,
M.
Maturana
,
E. S.
Nurse
,
D.
Payne
,
B. H.
Brinkmann
,
D. B.
Grayden
,
S. B.
Dumanis
,
M. P.
Richardson
,
G. A.
Worrell
et al.,
”Forecasting cycles of seizure likelihood
,”
Epilepsia
61
,
776
786
(
2020
).
32.
N. M.
Gregg
,
M.
Nasseri
,
V.
Kremen
,
E. E.
Patterson
,
B. K.
Sturges
,
T. J.
Denison
,
B. H.
Brinkmann
, and
G. A.
Worrell
, “
Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy
,”
Brain Commun.
2
,
1968
(
2020
).
You do not currently have access to this content.