We propose an extended reservoir computer that shows the functional differentiation of neurons. The reservoir computer is developed to enable changing of the internal reservoir using evolutionary dynamics, and we call it an evolutionary reservoir computer. To develop neuronal units to show specificity, depending on the input information, the internal dynamics should be controlled to produce contracting dynamics after expanding dynamics. Expanding dynamics magnifies the difference of input information, while contracting dynamics contributes to forming clusters of input information, thereby producing multiple attractors. The simultaneous appearance of both dynamics indicates the existence of chaos. In contrast, the sequential appearance of these dynamics during finite time intervals may induce functional differentiations. In this paper, we show how specific neuronal units are yielded in the evolutionary reservoir computer.

1.
O.
Sporns
and
R. F.
Betzel
,
Annu. Rev. Psychol.
67
,
613
640
(
2016
).
2.
M. F.
Glasser
,
T. S.
Coalson
,
E. C.
Robinson
,
C. D.
Hacker
,
J.
Harwell
, and
E.
Yacoub
,
Nature
536
,
171
178
(
2016
).
3.
A.
Treves
,
W. E.
Skaggs
, and
C. A.
Barnes
,
Hippocampus
6
,
666
74
(
1996
).
4.
J.
Sharma
,
A.
Angelucci
, and
M.
Sur
,
Nature
404
,
841
847
(
2000
).
5.
B.
Biswal
,
F.
Zerrin Yetkin
,
V. M.
Haughton
, and
J. S.
Hyde
,
Magn. Reson. Med.
34
,
537
541
(
1995
).
6.
M. D.
Greicius
,
B.
Krasnow
,
A. L.
Reiss
, and
V.
Menon
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
253
258
(
2003
).
7.
M. D.
Fox
,
A. Z.
Snyder
,
J. L.
Vincent
,
M.
Corbetta
,
D. C. V.
Essen
, and
M. E.
Raichle
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
9673
9678
(
2005
).
8.
C.
Von der Malsburg
,
Kybernetik
14
,
85
100
(
1973
).
9.
S.-I.
Amari
,
Bull. Math. Biol.
42
,
339
364
(
1980
).
10.
T.
Kohonen
,
Biol. Cybern.
43
,
59
69
(
1982
).
11.
Q. V.
Le
, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2013), pp. 8595–8598.
12.
M.
Asada
,
K. F.
MacDorman
,
H.
Ishiguro
, and
Y.
Kuniyoshi
,
Rob. Auton. Syst.
37
,
185
193
(
2001
).
13.
I.
Tsuda
,
Y.
Yamaguti
, and
H.
Watanabe
,
Entropy
18
,
74
(
2016
).
14.
Y.
Yamaguti
and
I.
Tsuda
,
Neural Netw.
62
,
3
10
(
2015
).
15.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
).
16.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
,
Neural Comput.
14
,
2531
2560
(
2002
).
17.
H.
Jaeger
and
H.
Haas
,
Science
304
,
78
80
(
2004
).
18.
P.
Dominey
,
M.
Arbib
, and
J.-P.
Joseph
,
J. Cognit. Neurosci.
7
,
311
336
(
1995
).
19.
T.
Yamazaki
and
S.
Tanaka
,
Neural Netw.
20
,
290
297
(
2007
).
20.
P.
Enel
,
E.
Procyk
,
R.
Quilodran
, and
P. F.
Dominey
,
PLoS Comput. Biol.
12
,
e1004967
(
2016
).
21.
N.
Bertschinger
and
T.
Natschläger
,
Neural Comput.
16
,
1413
1436
(
2004
).
22.
D.
Sussillo
and
L. F.
Abbott
,
Neuron
63
,
544
557
(
2009
).
23.
G. M.
Hoerzer
,
R.
Legenstein
, and
W.
Maass
,
Cereb. Cortex
24
,
677
690
(
2014
).
24.
R.
Laje
and
D. V.
Buonomano
,
Nat. Neurosci.
16
,
925
933
(
2013
).
25.
26.
T.
Yamane
,
S.
Takeda
,
D.
Nakano
,
G.
Tanaka
,
R.
Nakane
,
S.
Nakagawa
, and
A.
Hirose
, in International Conference on Neural Information Processing (Springer, 2016), pp. 205–212.
27.
V.
Mante
,
D.
Sussillo
,
K. V.
Shenoy
, and
W. T.
Newsome
,
Nature
503
,
78
84
(
2013
).
28.
O. E.
Rössler
,
Ann. N. Y. Acad. Sci.
504
,
229
240
(
1987
).
29.
Y.
Kawai
,
J.
Park
, and
M.
Asada
,
Neural Netw.
112
,
15
23
(
2019
).
30.
J.
Park
,
K.
Ichinose
,
Y.
Kawai
,
J.
Suzuki
,
M.
Asada
, and
H.
Mori
,
Entropy
21
,
214
(
2019
).
31.
S. C.
Seeman
,
L.
Campagnola
,
P. A.
Davoudian
,
A.
Hoggarth
,
T. A.
Hage
,
A.
Bosma-Moody
,
C. A.
Baker
,
J. H.
Lee
,
S.
Mihalas
,
C.
Teeter
et al.,
eLife
7
,
e37349
(
2018
).
32.
A.
Treves
,
Hippocampus
14
,
539
556
(
2004
).
33.
I.
Tsuda
,
E.
Koerner
, and
H.
Shimizu
,
Prog. Theor. Phys.
78
,
51
71
(
1987
).
34.
H.
Tsukada
,
Y.
Yamaguti
, and
I.
Tsuda
,
Cogn. Neurodyn.
7
,
409
416
(
2013
).
35.
I.
Tsuda
,
Behavioral Brain Sci.
24
,
793
810
(
2001
).
36.
Y.
Fukushima
,
M.
Tsukada
,
I.
Tsuda
,
Y.
Yamaguti
, and
S.
Kuroda
,
Cogn. Neurodyn.
1
,
305
16
(
2007
).
37.
I.
Tsuda
and
S.
Kuroda
,
Jpn. J. Ind. Appl. Math.
18
,
249
258
(
2001
).
38.
S.
Kuroda
,
Y.
Fukushima
,
Y.
Yamaguti
,
M.
Tsukada
, and
I.
Tsuda
,
Cogn. Neurodyn.
3
,
205
22
(
2009
).
39.
Y.
Yamaguti
,
S.
Kuroda
,
Y.
Fukushima
,
M.
Tsukada
, and
I.
Tsuda
,
Neural Netw.
24
,
43
53
(
2011
).
40.
M.
Rigotti
,
O.
Barak
,
M. R.
Warden
,
X.-J.
Wang
,
N. D.
Daw
,
E. K.
Miller
, and
S.
Fusi
,
Nature
497
,
585
590
(
2013
).
41.
K.
Kaneko
and
I.
Tsuda
,
Chaos
13
,
926
936
(
2003
).
You do not currently have access to this content.