Discrete dynamical systems such as cellular automata are of increasing interest to scientists in a variety of disciplines since they are simple models of computation capable of simulating complex phenomena. For this reason, the problem of reversibility of such systems is very important and, therefore, recurrently taken up by researchers. Unfortunately, the study of reversibility is remarkably hard, especially in the case of two- or higher-dimensional cellular automata. In this paper, we propose a novel and simple method that allows us to completely resolve the reversibility problem of a wide class of linear cellular automata on finite triangular grids with null boundary conditions.
REFERENCES
1.
S.
Ulam
, “Random processes and transformations,” in Proceedings of the International Congress on Mathematics (Cambridge, 1952), Vol. 2, pp. 264–275.2.
J.
von Neumann
, Theory of Self-Reproducing Automata
(University of Illinois Press
, Champaign, IL
, 1966
).3.
G. A.
Hedlund
, “Endomorphisms and automorphisms of the shift dynamical system
,” Math. Syst. Theory
3
(4
), 320
–375
(1969
). 4.
D.
Richardson
, “Tessellation with local transformations
,” J. Comput. Syst. Sci.
6
, 373
–388
(1972
). 5.
E.
Jen
, “Global properties of cellular automata
,” J. Stat. Phys.
43
(1-2
), 219
–242
(1986
). 6.
S.
Wolfram
, “Universality and complexity in cellular automata
,” Physica D
10
(1–2
), 1
–35
(1984
). 7.
S.
Wolfram
, “Twenty problems in the theory of cellular automata
,” Phys. Scr.
1985
(T9
), 170
(1985
). 8.
9.
S.
Amoroso
and Y.
Patt
, “Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures
,” J. Comput. Syst. Sci.
6
, 448
–464
(1972
). 10.
S.
Di Gregorio
and G.
Trautteur
, “On reversibility in cellular automata
,” J. Comput. Syst. Sci.
11
, 382
–391
(1975
). 11.
K.
Sutner
, “De Bruijn graphs and linear cellular automata
,” Complex Syst.
5
, 19
–30
(1991
).12.
K.
Bhattacharjee
and S.
Das
, “Reversibility of -state finite cellular automata
,” J. Cell. Autom.
11
, 213
–245
(2016
).13.
J.
Kari
, “Reversibility of 2D cellular automata is undecidable
,” Physica D
45
(1-3
), 379
–385
(1990
). 14.
M.
Itô
, N.
Ôsato
, and M.
Nasu
, “Linear cellular automata over
,” J. Comput. Syst. Sci.
27
, 125
–140
(1983
). 15.
A.
Dennunzio
, E.
Formenti
, L.
Manzoni
, L.
Margara
, and A. E.
Porreca
, “On the dynamical behaviour of linear higher-order cellular automata and its decidability
,” Inf. Sci.
486
, 73
–87
(2019
). 16.
G.
Manzini
and L.
Margara
, “Invertible linear cellular automata over : Algorithmic and dynamical aspects
,” J. Comput. Syst. Sci.
56
, 60
–67
(1998
). 17.
B.
Yang
, C.
Wang
, and A.
Xiang
, “Reversibility of general 1D linear cellular automata over the binary field under null boundary conditions
,” Inf. Sci.
324
, 23
–31
(2015
). 18.
A. K.
Das
, A.
Ganguly
, A.
Dasgupta
, S.
Bhawmik
, and P. P.
Chaudhuri
, “Efficient characterisation of cellular automata
,” IEEE Proc. Comput. Digital Tech.
137
, 81
–87
(1990
). 19.
A. M.
del Rey
and G. R.
Sánchez
, “Reversibility of linear cellular automata
,” Appl. Math. Comput.
217
, 8360
–8366
(2011
).20.
J. C. S. T.
Mora
, “Matrix methods and local properties of reversible one-dimensional cellular automata
,” J. Phys. A Math. Gen.
35
, 5563
–5573
(2002
). 21.
D. H.
Serrano
and A. M.
del Rey
, “A closed formula for the inverse of a reversible cellular automaton with -cyclic rule
,” Appl. Math. Comput.
357
, 23
–34
(2019
). 22.
A.
Augustynowicz
, J. M.
Baetens
, B.
De Baets
, A.
Dzedzej
, A.
Nenca
, and B.
Wolnik
, “A note on the reversibility of 2D cellular automata on hexagonal grids
,” J. Cell. Autom.
13
, 521
–525
(2018
).23.
B.
Durand
, E.
Formenti
, and Z.
Róka
, “Number-conserving cellular automata I: Decidability
,” Theor. Comput. Sci.
299
(1
), 523
–535
(2003
). 24.
N.
Tanimoto
and K.
Imai
, “A characterization of von Neumann neighbor number-conserving cellular automata
,” J. Cell. Autom.
4
, 39
–54
(2009
).25.
K.
Imai
, H.
Ishizaka
, and V.
Poupet
, 5-State Rotation-Symmetric Number-Conserving Cellular Automata Are Not Strongly Universal
(Springer International Publishing
, Cham
, 2015
), pp. 31
–43
.26.
B.
Wolnik
, A.
Dzedzej
, J. M.
Baetens
, and B.
De Baets
, “Number-conserving cellular automata with a von Neumann neighborhood of range one
,” J. Phys. A Math. Theor.
50
(43
), 435101
(2017
). 27.
C.
Bays
, “Cellular automata in the triangular tessellation
,” Complex Syst.
8
, 127
–150
(1994
). 28.
M.
Zawidzki
, “Application of semitotalistic 2D cellular automata on a triangulated 3D surface
,” Int. J. Des. Nat. Ecodyn.
6
, 34
–51
(2011
). 29.
R.
Alonso-Sanz
, “A structurally dynamic cellular automaton with memory in the triangular tessellation
,” Complex Syst.
17
, 1
–15
(2007
).30.
G. M.
Ortigoza
, “Unstructured triangular cellular automata for modeling geographic spread
,” Appl. Math. Comput.
258
, 520
–536
(2015
).31.
J.
Ji
, L.
Lu
, Z.
Jin
, S.
Wei
, and L.
Ni
, “A cellular automata model for high-density crowd evacuation using triangle grids
,” Physica A
509
, 1034
–1045
(2018
). 32.
S.
Uguz
, S.
Redjepov
, E.
Acar
, and H.
Akin
, “Structure and reversibility of 2D von Neumann cellular automata over triangular lattice
,” Int. J. Bifurcat. Chaos
27
(06
), 1750083
(2017
). 33.
B.
Wolnik
, M.
Dziemiańczuk
, and B.
De Baets
, “Recurrent misconceptions in the study of CA reversibility on triangular grids,” Int. J. Bifurcat. Chaos (in press) (2020).34.
S.
Uguz
, E.
Acar
, and S.
Redjepov
, “2D triangular von Neumann cellular automata with periodic boundary
,” Int. J. Bifurcat. Chaos
29
(03
), 1950029
(2019
). © 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.