When a chaotic attractor is produced by a three-dimensional strongly dissipative system, its ultimate characterization is reached when a branched manifold—a template—can be used to describe the relative organization of the unstable periodic orbits around which it is structured. If topological characterization was completed for many chaotic attractors, the case of toroidal chaos—a chaotic regime based on a toroidal structure—is still challenging. We here investigate the topology of toroidal chaos, first by using an inductive approach, starting from the branched manifold for the Rössler attractor. The driven van der Pol system—in Robert Shaw’s form—is used as a realization of that branched manifold. Then, using a deductive approach, the branched manifold for the chaotic attractor produced by the Deng toroidal system is extracted from data.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
H.
Freudenthal
, “
Leibniz und die analysis situs
,”
Stud. Leibnitiana
4
,
61
69
(
1972
).
3.
A.-T.
Vandermonde
, “
Remarques sur les Problèmes de Situation
,” Mémoires de l’Académie Royale des Sciences (Paris) (
1771
), pp.
566
574
.
4.
C. F.
Gauss
, “Note dated 22 January 1833,” in Werke, edited by C. Schäfer (Königliche Gesellschaft der Wissenschaften zu Göttingen, Leipzig, 1867), Vol. 5, p. 605.
5.
R. L.
Ricca
and
B.
Nipoti
, “
Gauss’ linking number revisited
,”
J. Knot Theor. Ramif.
20
,
1325
1343
(
2011
).
6.
J. B.
Listing
,
Vorstudien zur Topologie
(
Vandenboeck und Ruprecht
,
Göttingen
,
1848
).
7.
P. G.
Tait
, “
On knots i
,”
Trans. R. Soc. Edinb.
28
,
145
190
(
1877
).
8.
P. G.
Tait
, “
On knots ii
,”
Trans. R. S. Edinb.
32
,
327
342
(
1884
).
9.
P. G.
Tait
, “
On knots iii
,”
Trans. R. Soc. Edinb.
32
,
493
506
(
1884
).
10.
H.
Poincaré
, “
Analysis situs
,”
J. École Polytechnique
1
,
1
121
(
1895
).
11.
H.
Poincaré
, “
Sur le problème des trois corps et les équations de la dynamique
,”
Acta Math.
13
,
1
270
(
1890
).
12.
H.
Poincaré
,
Les méthodes nouvelles de la mécanique céleste iii
(
Gauthier-Vilard
,
Paris
,
1899
).
13.
R. F.
Williams
, “
Expanding attractors
,”
Publ. Math. Inst. Hautes Études Sci.
43
,
169
203
(
1974
).
14.
O. E.
Rössler
, “
Chaotic behavior in simple reaction system
,”
Z. Naturforsch. A
31
,
259
264
(
1976
).
15.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
16.
O. E.
Rössler
, “
Chaos in abstract kinetics: Two prototypes
,”
Bull. Math. Biol.
39
,
275
289
(
1977
).
17.
J.
Birman
and
R. F.
Williams
, “
Knotted periodic orbits in dynamical systems I. Lorenz’s equations
,”
Topology
22
,
47
82
(
1983
).
18.
J.
Birman
and
R. F.
Williams
, “
Knotted periodic orbits in dynamical systems II. Knot holders for fibred knots
,”
Contemp. Math.
20
,
1
60
(
1983
).
19.
R.
Gilmore
, “
Topological analysis of chaotic dynamical systems
,”
Rev. Mod. Phys.
70
,
1455
1529
(
1998
).
20.
G. B.
Mindlin
,
H. G.
Solari
,
M. A.
Natiello
,
R.
Gilmore
, and
X.-J.
Hou
, “
Topological analysis of chaotic time series data from the Belousov-Zhabotinskii reaction
,”
J. Nonlinear Sci.
1
,
147
173
(
1991
).
21.
G. M.
Mindlin
and
R.
Gilmore
, “
Topological analysis and synthesis of chaotic time series
,”
Physica D
58
,
229
242
(
1992
).
22.
N. B.
Tufillaro
,
T.
Abbott
, and
J.
Reilly
,
An Experimental Approach to Nonlinear Dynamics and Chaos
(
Addison-Wesley
,
Redwood City, CA
,
1992
).
23.
M.
Lefranc
and
P.
Glorieux
, “
Topological analysis of chaotic signals from a CO2 laser with modulated losses
,”
Int. J. Bifurc. Chaos
3
,
643
650
(
1993
).
24.
L.
Kocarev
,
Z.
Tasev
, and
D.
Dimovski
, “
Topological description of a chaotic attractor with spiral structure
,”
Phys. Lett. A
190
,
399
402
(
1994
).
25.
C.
Letellier
,
P.
Dutertre
, and
G.
Gouesbet
, “
Characterization of the Lc system, taking into account the equivariance of the vector field
,”
Phys. Rev. E
49
,
3492
3495
(
1994
).
26.
T.
Braun
,
R. R. B.
Correia
, and
N.
Altmann
, “
Topological model of homoclinic chaos in a glow discharge
,”
Phys. Rev. E
51
,
4165
4168
(
1995
).
27.
C.
Letellier
,
P.
Dutertre
, and
B.
Maheu
, “
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,”
Chaos
5
,
271
282
(
1995
).
28.
R. W.
Ghrist
and
P. J.
Holmes
, “
An ODE whose solutions contain all knots and links
,”
Int. J. Bifurc. Chaos
6
,
779
800
(
1996
).
29.
C.
Letellier
,
P.
Dutertre
,
J.
Reizner
, and
G.
Gouesbet
, “
Evolution of multimodal map induced by an equivariant vector field
,”
J. Phys. A
29
,
5359
5373
(
1996
).
30.
G.
Boulant
,
M.
Lefranc
,
S.
Bielawski
, and
D.
Derozier
, “
A nonhorseshoe template in a chaotic laser model
,”
Int. J. Bifurc. Chaos
08
,
965
975
(
1998
).
31.
C.
Letellier
,
E.
Roulin
, and
O. E.
Rössler
, “
Inequivalent topologies of chaos in simple equations
,”
Chaos Solitons Fractals
28
,
337
360
(
2006
).
32.
C.
Letellier
and
R.
Gilmore
, “
The universal template is a subtemplate of the double-scroll template
,”
J. Phys. A
46
,
065102
(
2013
).
33.
R.
Gilmore
,
C.
Letellier
, and
M.
Lefranc
, “
Chaos topology
,”
Scholarpedia
3
,
4592
(
2008
).
34.
W. F.
Langford
, “Numerical studies of torus bifurcations,” in Numerical Methods for Bifurcation Problems, International Series of Numerical Mathematics Vol. 70, edited by T. Küpper, H. D. Mittelmann and H. Weber (Birkhäuser, Basel, 1984), pp. 285–295.
35.
B.
Deng
, “
Constructing homoclinic orbits and chaotic attractors
,”
Int. J. Bifurc. Chaos
4
,
823
841
(
1994
).
36.
D.
Li
, “
A three-scroll chaotic attractor
,”
Phys. Lett. A
372
,
387
393
(
2008
).
37.
O. E.
Rössler
, “
Continuous chaos: Four prototype equations
,”
Ann. N. Y. Acad. Sci.
316
,
376
392
(
1979
).
38.
C.
Letellier
and
O. E.
Rössler
, “An updated hierarchy of chaos,” in Chaos: The World of Nonperiodic Oscillations (Springer, Cham, Switzerland, 2020), pp. 181–203.
39.
G.
Mindlin
and
H.
Solari
, “
Tori and Klein bottles in four-dimensional chaotic flows
,”
Physica D
102
,
177
186
(
1997
).
40.
J.
Curry
and
J. A.
Yorke
, “
A transition from Hopf bifurcation to chaos: Computer experiments with maps on R2
,”
Lecture Notes Math.
668
,
48
66
(
1978
).
41.
T. D.
Tsankov
and
R.
Gilmore
, “
Topological aspects of the structure of chaotic attractors in R3
,”
Phys. Rev. E
69
,
056206
(
2004
).
42.
M.
Rosalie
and
C.
Letellier
, “
Systematic template extraction from chaotic attractors: i. Genus-one attractors with an inversion symmetry
,”
J. Phys. A Math. Theor.
46
,
375101
(
2013
).
43.
L.
Le Sceller
,
C.
Letellier
, and
G.
Gouesbet
, “
Algebraic evaluation of linking numbers of unstable periodic orbits in chaotic attractors
,”
Phys. Rev. E
49
,
4693
4695
(
1994
).
44.
C.
Letellier
, “Caractérisation topologique et reconstruction des attracteurs étranges,” Ph.D. thesis (University of Paris VII, Paris, France, 1994).
45.
H.
Bai-Lin
,
Elementary Symbolic Dynamics and Chaos in Dissipative Systems
(
World Scientific Publishing
,
Singapore
,
1989
).
46.
R.
Shaw
, “
Strange attractor, chaotic behavior and information flow
,”
Z. Naturforsch. A
36
,
80
112
(
1981
).
47.
O.
Ménard
,
C.
Letellier
,
J.
Maquet
,
L. L.
Sceller
, and
G.
Gouesbet
, “
Analysis of a non synchronized sinusoidally driven dynamical system
,”
Int. J. Bifurc. Chaos
10
,
1759
1772
(
2000
).
48.
C.
Letellier
and
G.
Gouesbet
, “
Topological characterization of reconstructed attractors modding out symmetries
,”
J. Phys. ii
6
,
1615
1638
(
1996
).
49.
R.
Miranda
and
E.
Stone
, “
The proto-Lorenz system
,”
Phys. Lett. A
178
,
105
113
(
1993
).
50.
C.
Letellier
and
R.
Gilmore
, “
Covering dynamical systems: Two-fold covers
,”
Phys. Rev. E
63
,
016206
(
2001
).
51.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
New York
,
1993
).
52.
S.
Mangiarotti
,
M.
Peyre
, and
M.
Huc
, “
A chaotic model for the epidemic of Ebola virus disease in West Africa (2013-2016)
,”
Chaos
26
,
113112
(
2016
).
You do not currently have access to this content.