Huntington's disease (HD), a genetically determined neurodegenerative disease, is positively correlated with eye movement abnormalities in decision making. The antisaccade conflict paradigm has been widely used to study response inhibition in eye movements, and reliable performance deficits in HD subjects have been observed, including a greater number and timing of direction errors. We recorded the error rates and response latencies of early HD patients and healthy age-matched controls performing the mirror antisaccade task. HD participants displayed slower and more variable antisaccade latencies and increased error rates relative to healthy controls. A competitive accumulator-to-threshold neural model was then employed to quantitatively simulate the controls' and patients' reaction latencies and error rates and uncover the mechanisms giving rise to the observed HD antisaccade deficits. Our simulations showed that (1) a more gradual and noisy rate of accumulation of evidence by HD patients is responsible for the observed prolonged and more variable antisaccade latencies in early HD; (2) the confidence level of early HD patients making a decision is unaffected by the disease; and (3) the antisaccade performance of healthy controls and early HD patients is the end product of a neural lateral competition (inhibition) between a correct and an erroneous decision process, and not the end product of a third top-down stop signal suppressing the erroneous decision process as many have speculated.

1
U.
Rüb
,
F.
Hoche
,
E. R.
Brunt
,
H.
Heinsen
,
K.
Seidel
,
D.
Del Turco
 et al, “
Degeneration of the cerebellum in Huntington’s disease (HD): Possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process
,”
Brain Pathol.
23
,
165
177
(
2013
).
2
R.
Ghosh
and
S. J.
Tabrizi
, “
Clinical features of Huntington’s disease
,”
Adv. Exp. Med. Biol.
1049
,
1
28
(
2018
).
3
F. O.
Walker
, “
Huntington’s disease
,”
Semin. Neurol
27
,
143
150
(
2007
).
4
F. O.
Walker
, “
Huntington’s disease
,”
Lancet
369
,
218
228
(
2007
).
5
A. G.
Lasker
and
D. S.
Zee
, “
Ocular motor abnormalities in Huntington’s disease
,”
Vis. Res.
37
(
24
),
3639
3645
(
1997
).
6
Y. A.
Grimbergen
,
M. J.
Knol
,
B. R.
Bloem
,
B. P.
Kremer
,
R. A.
Roos
, and
M.
Munneke
, “
Falls and gait disturbances in Huntington’s disease
,”
Mov. Disord.
23
,
970
976
(
2008
).
7
M. E.
Busse
,
C. M.
Wiles
, and
A. E.
Rosser
, “
Mobility and falls in people with Huntington’s disease
,”
J. Neurol. Neurosurg. Psychiatry
80
,
88
90
(
2009
).
8
U.
Rüb
,
H.
Heinsen
,
E. R.
Brunt
,
B.
Landwehrmeyer
,
W. F.
Den Dunnen
,
K.
Gierga
, and
T.
Deller
, “
The human premotor oculomotor brainstem system—Can it help to understand oculomotor symptoms in Huntington’s disease?
,”
Neuropathol. Appl. Neurobiol.
35
,
4
15
(
2009
).
9
H.
Heinsen
,
M.
Strik
,
M.
Bauer
,
K.
Luther
,
G.
Ulmar
,
D.
Gangnus
 et al, “
Cortical and striatal neurone number in Huntington’s disease
,”
Acta Neuropathol.
88
,
320
333
(
1994
).
10
J. P.
Vonsattel
,
R. H.
Myers
,
T. J.
Stevens
,
R. J.
Ferrante
,
E. D.
Bird
, and
E. P.
Richardson
, “
Neuropathological classification of Huntington’s disease
,”
J. Neuropathol. Exp. Neurol.
44
(
6
),
559
577
(
1985
).
11
H. W.
Lange
, “
Quantitative changes of telencephalon, diencephalon, and mesencephalon in Huntington’s chorea, postencephalitic, and idiopathic parkinsonism
,”
Verh. Anat. Ges.
75
,
923
925
(
1981
).
12
A. H.
Koeppen
, “
The nucleus pontis centralis caudalis in Huntington’s disease
,”
J. Neurol. Sci.
91
(
1–2
),
129
141
(
1989
).
13
H.
Heinsen
,
U.
Rüb
,
M.
Bauer
,
G.
Ulmar
,
B.
Bethke
,
M.
Schüler
 et al, “
Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease
,”
Acta Neuropathol.
97
,
613
622
(
1999
).
14
H.
Heinsen
,
U.
Rüb
,
D.
Gangnus
,
G.
Jungkunz
,
M.
Bauer
,
G.
Ulmar
 et al, “
Nerve cell loss in the thalamic centro-median-parafascicular complex in patients with Huntington’s disease
,”
Acta Neuropathol.
91
,
161
168
(
1996
).
15
H. D.
Rosas
,
D. H.
Salat
,
S. Y.
Lee
,
A. K.
Zaleta
,
N.
Hevelone
 et al, “
Complexity and heterogeneity: What drives the ever-changing brain in Huntington’s disease?
,”
Ann. N.Y. Acad. Sci.
1147
,
196
205
(
2008
).
16
S.
Tekin
and
J. L.
Cummings
, “
Frontal-subcortical neuronal circuits and clinical neuropsychiatry: An update
,”
J. Psychosom. Res.
53
,
647
654
(
2002
).
17
I.
Bohanna
,
N.
Georgiou-Karistianis
,
A. J.
Hannan
, and
G. F.
Egan
, “
Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease
,”
Brain Res. Rev.
58
,
209
225
(
2008
).
18
H. D.
Rosas
,
D. H.
Salat
,
S. Y.
Lee
,
A. K.
Zaleta
,
V.
Pappu
 et al, “
Cerebral cortex and the clinical expression of Huntington’s disease: Complexity and heterogeneity
,”
Brain
131
,
1057
1068
(
2008
).
19
S. J.
Tabrizi
,
D. R.
Langbehn
,
B. R.
Leavitt
,
R. A.
Roos
,
A.
Durr
,
D.
Craufurd
,
C.
Kennard
,
S. L.
Hicks
,
N. C.
Fox
,
R. I.
Scahill
,
B.
Borowsky
,
A. J.
Tobin
,
H. D.
Rosas
,
H.
Johnson
,
R.
Reilmann
,
B.
Landwehrmeyer
,
J. C.
Stout
, and
TRACK-HD Investigators
. “
Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data
,”
Lancet Neurol.
8
(
9
),
791
801
(
2009
).
20
A. G.
Lasker
,
D. S.
Zee
,
T. C.
Hain
,
S. E.
Folstein
, and
H. S.
Singer
, “
Saccades in Huntington’s disease: Slowing and dysmetria
,”
Neurology
38
(
3
),
427
431
(
1988
).
21
C. A.
Antoniades
,
P. M.
Altham
,
S. L.
Mason
,
R. A.
Barker
, and
R.
Carpenter
, “
Saccadometry: A new tool for evaluating presymptomatic Huntington patients
,”
Neuroreport
18
(
11
),
1133
1136
(
2007
).
22
C. A.
Antoniades
,
Z.
Xu
,
S. L.
Mason
,
R. H.
Carpenter
, and
R. A.
Barker
, “
Huntington’s disease: Changes in saccades and hand-tapping over 3 years
,”
J. Neurol.
257
(
11
),
1890
1898
(
2010
).
23
T.
Blekher
,
S. A.
Johnson
,
J.
Marshall
,
K.
White
,
S.
Hui
,
M.
Weaver
 et al, “
Saccades in presymptomatic and early stages of Huntington disease
,”
Neurology
67
(
3
),
394
399
(
2006
).
24
C. V.
Golding
,
C.
Danchaivijitr
,
T. L.
Hodgson
,
S. J.
Tabrizi
, and
C.
Kennard
, “
Identification of an oculomotor biomarker of preclinical Huntington disease
,”
Neurology
67
(
3
),
485
487
(
2006
).
25
M. P.
Robert
,
P. C.
Nachev
,
S. L.
Hicks
,
C. V.
Golding
,
S. J.
Tabrizi
, and
C.
Kennard
, “
Saccadometry of conditional rules in presymptomatic Huntington’s disease
,”
Ann. N.Y. Acad. Sci.
1164
,
444
450
(
2009
).
26
S. M.
Dursun
,
J. G.
Burke
,
H.
Andrews
,
A.
Mlynik-Szmid
, and
M. A.
Reveley
, “
The effects of antipsychotic medication on saccadic eye movement abnormalities in Huntington’s disease
,”
Prog. Neuropsychopharmacol. Biol. Psychiatry
24
(
6
),
889
896
(
2000
).
27
J. R.
Tian
,
D. S.
Zee
,
A. G.
Lasker
, and
S. E.
Folstein
, “
Saccades in Huntington’s disease: Predictive tracking and interaction between release of fixation and initiation of saccades
,”
Neurology
41
(
6
),
875
881
(
1991
).
28
S. S.
Patel
,
J.
Jankovic
,
A. J.
Hood
,
B. J.
Cameron
, and
A. B.
Sereno
, “
Reflexive and volitional saccades: Biomarkers of Huntington disease severity and progression
,”
J. Neurol. Sci.
313
,
25
41
(
2012
).
29
A.
Peltsch
,
A.
Hoffman
,
I.
Armstrong
,
G.
Pari
, and
D. P.
Munoz
, “
Saccadic impairments in Huntington’s disease
,”
Exp. Brain Res.
186
(
3
),
457
469
(
2008
).
30
P. E.
Hallett
, “
Primary and secondary saccades to goals defined by instructions
,”
Vis. Res.
18
,
1279
1296
(
1978
).
31
S.
Everling
and
B.
Fischer
, “
The antisaccade: A review of basic research and clinical studies
,”
Neuropsychologia
36
,
885
899
(
1998
).
32
D. P.
Munoz
and
S.
Everling
, “
Look away: The antisaccade task and the voluntary control of eye movement
,”
Nat. Rev. Neurosci.
5
,
218
228
(
2004
).
33
I.
Noorani
and
R. H. S.
Carpenter
, “
Antisaccades as decisions: LATER model predicts latency distributions and error responses
,”
Eur. J. Neurosci.
37
,
330
338
(
2013
).
34
I.
Noorani
and
R. H. S.
Carpenter
, “
Re-starting a neural-race: Antisaccade correction
,”
Eur. J. Neurosci.
39
,
159
164
(
2014
).
35
V.
Cutsuridis
, “
Neural competition via lateral inhibition between decision processes and Not a STOP signal accounts for the antisaccade performance in healthy and schizophrenia subjects
,”
Front Neurosci.
9
,
5
(
2015
).
36
T. V.
Wiecki
,
C. A.
Antoniades
,
A.
Stevenson
,
C.
Kennard
,
B.
Borowsky
,
G.
Owen
,
B.
Leavitt
,
R.
Roos
,
A.
Durr
,
S. J.
Tabrizi
, and
M. J.
Frank
, “
A computational cognitive biomarker for early-stage Huntington’s disease
,”
PLoS ONE
11
(
2
),
e0148409
(
2016
).
37
V.
Cutsuridis
,
N.
Smyrnis
,
I.
Evdokimidis
, and
S.
Perantonis
, “
A neural model of decision making by the superior colliculus in an antisaccade task
,”
Neural Netw.
20
,
690
704
(
2007
).
38
V.
Cutsuridis
, “
Neural accumulator models of decision making in eye movements
,”
Adv. Exp. Med. Biol.
657
,
61
72
(
2010
).
39
V.
Cutsuridis
,
V.
Kumari
, and
U.
Ettinger
, “
Antisaccade performance in schizophrenia: A neural model of decision making in the superior colliculus
,”
Front. Neurosci.
8
,
13
(
2014
).
40
V.
Cutsuridis
, “
A neural accumulator model of antisaccade performance of healthy controls and obsessive-compulsive disorder patients
,” in
Proceedings of the 15th International Conference on Cognitive Modeling
, edited by
M. K.
vanVugt
,
A. P.
Banks
, and
W. G.
Kennedy
(
United Kingdom University of Warwick
,
Coventry
,
2017
), pp.
85
90
.
41
V.
Cutsuridis
, “
Modeling cognitive processing of healthy controls and obsessive compulsive disorder subjects in the antisaccade task
,” in
Multiscale Models of Brain Disorders
, edited by
V.
Cutsuridis
(
Springer-Nature
,
Heidelberg
,
2020
), pp.
91
103
.
42
C. C.
Lo
and
X. J.
Wang
, “
Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks
,”
Nat. Neurosci.
9
,
956
963
(
2006
).
43
V.
Cutsuridis
,
I.
Kahramanoglou
,
N.
Smyrnis
,
I.
Evdokimidis
, and
S.
Perantonis
, “
A neural variable integrator model of decision making in an antisaccade task
,”
Neurocomputing
70
(
7–9
),
1390
1402
(
2007
).
44
L. A.
Raymond
,
V. M.
André
,
C.
Cepeda
,
C. M.
Gladding
,
A. J.
Milnerwood
, and
M. S.
Levine
, “
Pathophysiology of Huntington’s disease: Time-dependent alterations in synaptic and receptor function
,”
Neuroscience
198
,
252
273
(
2011
).
45
S.
Everling
and
K.
Johnston
, “
Control of the superior colliculus by the lateral pre-frontal cortex
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
368
,
20130068
(
2013
).
46
H. S.
Group
, “
Unified Huntington’s disease rating scale: Reliability and consistency
,”
Mov. Disord.
11
(
2
),
136
142
(
1996
).
47
D. M.
Stampe
, “
Heuristic filtering and reliable calibration methods for video-based pupil-tracking systems
,”
Behav. Res. Methods Instrum. Comput.
25
(
2
),
137
142
(
1993
).
48
L.
Thaler
,
A. C.
Schütz
,
M. A.
Goodale
, and
K. R.
Gegenfurtner
, “
What is the best fixation target? The effect of target shape on stability of fixational eye movements
,”
Vis. Res.
76
,
31
42
(
2013
).
49
W.
Dai
,
I.
Selesnick
,
J. R.
Rizzo
,
J.
Rucker
, and
T. A.
Hudson
, “
Nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades
,”
J. Vis.
17
(
9
),
10
(
2017
).
50
R.
Engbert
and
R.
Kliegl
, “
Microsaccades uncover the orientation of covert attention
,”
Vis. Res
43
(
9
),
1035
1045
(
2003
).
51
J.
Kennedy
and
R. C.
Eberhart
, “
Particle swarm optimization
,”
Proc. Int. Conf. Neural Netw.
4
,
1942
1948
(
1995
).
52
D. L.
Sparks
, “
Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset
,”
Brain Res.
156
,
1
16
(
1978
).
53
R.
Ratcliff
, “
Group reaction time distributions and an analysis of distribution statistics
,”
Psychol. Bull.
86
,
446
461
(
1977
).
54
R. H. S.
Carpenter
and
M. L. L.
Williams
, “
Neural computation of log likelihood in the control of saccadic eye movements
,”
Nature
377
,
59
62
(
1995
).
55
B.
Weaver
and
K. L.
Wuensch
, “
SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients
,”
Behav. Res. Methods
45
(
3
),
880
895
(
2013
).
You do not currently have access to this content.