The peroxidase–oxidase (PO) reaction involves the oxidation of reduced nicotinamide adenine dinucleotide by molecular oxygen. When both reactants are supplied continuously to a reaction mixture containing the enzyme and a phenolic compound, the reaction will exhibit oscillatory behavior. In fact, the reaction exhibits a zoo of dynamical behaviors ranging from simple periodic oscillations to period-doubled and mixed mode oscillations to quasiperiodicity and chaos. The routes to chaos involve period-doubling, period-adding, and torus bifurcations. The dynamic behaviors in the experimental system can be simulated by detailed semiquantitative models. Previous models of the reaction have omitted the phenolic compound from the reaction scheme. In the current paper, we present new experimental results with the oscillating PO reaction that add to our understanding of its rich dynamics, and we describe a new variant of a previous model, which includes the chemistry of the phenol in the reaction mechanism. This new model can simulate most of the experimental behaviors of the experimental system including the new observations presented here. For example, the model reproduces the two main routes to chaos observed in experiments: (i) a period-doubling scenario, which takes place at low pH, and a period-adding scenario involving mixed mode oscillations (MMOs), which occurs at high pH. Our simulations suggest alternative explanations for the pH-sensitivity of the dynamics. We show that the MMO domains are separated by narrow parameter regions of chaotic behavior or quasiperiodicity. These regions start as tongues of secondary quasiperiodicity and develop into strange attractors through torus breakdown.

1.
O. E.
Rössler
, “
Chaotic behavior in simple reaction systems
,”
Z. Naturforsch. Sec. A
31
,
259
264
(
1976
).
2.
L. F.
Olsen
and
H.
Degn
, “
Chaos in an enzyme reaction
,”
Nature
267
,
177
178
(
1977
).
3.
R. A.
Schmitz
,
K. R.
Graziani
, and
J. L.
Hudson
, “
Experimental-evidence of chaotic states in Belousov–Zhabotinskii reaction
,”
J. Chem. Phys.
67
,
3040
3044
(
1977
).
4.
S. K.
Scott
, Chemical Chaos, 2nd ed., International Series of Monographs on Chemistry (Book 24) (Oxford University Press, 1993).
5.
Chaos in Chemistry and Biochemistry, edited by R. J. Field and L. Györgyi (World Scientific, Singapore, 1993).
6.
W. M.
Schaffer
, “
Stretching and folding in lynx fur returns—Evidence for a strange attractor in nature
,”
Am. Nat.
124
,
798
820
(
1984
).
7.
A.
Medvinsky
,
S.
Petrovskii
,
I.
Tikhonova
,
H.
Malchow
, and
B.
Li
, “
Spatiotemporal complexity of plankton and fish dynamics
,”
SIAM Rev.
44
,
311
370
(
2002
).
8.
L. F.
Olsen
and
W. M.
Schaffer
, “
Chaos versus noisy periodicity—Alternative hypotheses for childhood epidemics
,”
Science
249
,
499
504
(
1990
).
9.
D.
Earn
,
P.
Rohani
,
B.
Bolker
, and
B.
Grenfell
, “
A simple model for complex dynamical transitions in epidemics
,”
Science
287
,
667
670
(
2000
).
10.
H. L. D.
de S. Cavalcante
,
M.
Oriá
,
D.
Sornette
,
E.
Ott
, and
D. J.
Gauthier
, “
Predictability and suppression of extreme events in a chaotic system
,”
Phys. Rev. Lett.
111
,
198701
(
2013
).
11.
M.
Rypdal
and
G.
Sugihara
, “
Inter-outbreak stability reflects the size of the susceptible pool and forecasts magnitudes of seasonal epidemics
,”
Nat. Commun.
10
,
2374
(
2019
).
12.
L.
Glass
, “
Synchronization and rhythmic processes in physiology
,”
Nature
410
,
277
284
(
2001
).
13.
C.
Stam
, “
Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field
,”
Clin. Neurophysiol.
116
,
2266
2301
(
2005
).
14.
M. I.
Rabinovich
,
P.
Varona
,
A. I.
Selverston
, and
H. D. I.
Abarbanel
, “
Dynamical principles in neuroscience
,”
Rev. Mod. Phys.
78
,
1213
1265
(
2006
).
15.
A.
Voss
,
S.
Schulz
,
R.
Schroeder
,
M.
Baumert
, and
P.
Caminal
, “
Methods derived from nonlinear dynamics for analysing heart rate variability
,”
Philos. Trans. R. Soc. A
367
,
277
296
(
2009
).
16.
U.
Kummer
,
B.
Krajnc
,
J.
Pahle
,
A. K.
Green
,
C. J.
Dixon
, and
M.
Marhl
, “
Transition from stochastic to deterministic behavior in calcium oscillations
,”
Biophys. J.
89
,
1603
1611
(
2005
).
17.
C. H.
George
,
D.
Parthimos
, and
N. C.
Silvester
, “
A network-oriented perspective on cardiac calcium signaling
,”
Am. J. Physiol. Cell Physiol.
303
,
C897
C910
(
2012
).
18.
J. M.
Kembro
,
S.
Cortassa
,
D.
Lloyd
,
S. J.
Sollott
, and
M. A.
Aon
, “
Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
,”
Sci. Rep.
8
,
15422
(
2018
).
19.
T. V.
Bronnikova
,
V. R.
Fed’kina
,
W. M.
Schaffer
, and
L. F.
Olsen
, “
Period-doubling bifurcations and chaos in a detailed model of the peroxidase-oxidase reaction
,”
J. Phys. Chem.
99
,
9309
9312
(
1995
).
20.
L. F.
Olsen
,
A.
Lunding
, and
U.
Kummer
, “
Mechanism of melatonin-induced oscillations in the peroxidase-oxidase reaction
,”
Arch. Biochem. Biophys.
410
,
287
295
(
2003
).
21.
H. B.
Dunford
,
Heme Peroxidases
(
Wiley-VCH
,
1999
).
22.
A.
Scheeline
,
D. L.
Olson
,
E. P.
Williksen
,
G. A.
Horras
,
M. L.
Klein
, and
R.
Larter
, “
The peroxidase-oxidase oscillator and its constituent chemistries
,”
Chem. Rev.
97
,
739
756
(
1997
).
23.
H.
Degn
, “
Bistability caused by substrate inhibition of peroxidase in an open reaction system
,”
Nature
217
,
1047
1050
(
1968
).
24.
I.
Yamazaki
,
K.
Yokota
, and
R.
Nakajima
, “
Oscillatory oxidations of reduced pyridine nucleotide by peroxidase
,”
Biochem. Biophys. Res. Commun.
21
,
582
586
(
1965
).
25.
H.
Degn
, “
Compound-3 kinetics and chemiluminescence in oscillatory oxidation reactions catalyzed by horseradish peroxidase
,”
Biochim. Biophys. Acta
180
,
271
290
(
1969
).
26.
S.
Nakamura
,
K.
Yokota
, and
I.
Yamazaki
, “
Sustained oscillations in a lactoperoxidase NADPH and O2 system
,”
Nature
222
,
794
795
(
1969
).
27.
L. F.
Olsen
and
H.
Degn
, “
Oscillatory kinetics of peroxidase-oxidase reaction in an open system—Experimental and theoretical studies
,”
Biochim. Biophys. Acta
523
,
321
334
(
1978
).
28.
T.
Hauck
and
F. W.
Schneider
, “
Mixed-mode and quasi-periodic oscillations in the peroxidase oxidase reaction
,”
J. Phys. Chem.
97
,
391
397
(
1993
).
29.
M. S.
Samples
,
Y.-F.
Hung
, and
J.
Ross
, “
Further experimental studies on the horseradish-peroxidase oxidase reaction
,”
J. Phys. Chem.
96
,
7338
7342
(
1992
).
30.
A. C.
Moller
and
L. F.
Olsen
, “
Effect of magnetic fields on an oscillating enzyme reaction
,”
J. Am. Chem. Soc.
121
,
6351
6354
(
1999
).
31.
A. C.
Moller
and
L. F.
Olsen
, “
Perturbations of simple oscillations and complex dynamics in the peroxidase-oxidase reaction using magnetic fields
,”
J. Phys. Chem. B
104
,
140
146
(
2000
).
32.
M. J. B.
Hauser
,
L. F.
Olsen
,
T. V.
Bronnikova
, and
W. M.
Schaffer
, “
Routes to chaos in the peroxidase-oxidase reaction: Period-doubling and period-adding
,”
J. Phys. Chem. B
101
,
5075
5083
(
1997
).
33.
M. J. B.
Hauser
and
L. F.
Olsen
, “
Mixed-mode oscillations and homoclinic chaos in an enzyme reaction
,”
J. Chem. Soc. Faraday Trans.
92
,
2857
2863
(
1996
).
34.
T. Y.
Li
and
J. A.
Yorke
, “
Period 3 implies chaos
,”
Am. Math. Mon.
82
,
985
992
(
1975
).
35.
R. M.
May
, “
Simple mathematical-models with very complicated dynamics
,”
Nature
261
,
459
467
(
1976
).
36.
M. J.
Feigenbaum
, “
Quantitative universality for a class of non-linear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1978
).
37.
T.
Geest
,
C. G.
Steinmetz
,
R.
Larter
, and
L. F.
Olsen
, “
Period-doubling bifurcations and chaos in an enzyme reaction
,”
J. Phys. Chem.
96
,
5678
5680
(
1992
).
38.
T.
Hauck
and
F. W.
Schneider
, “
Chaos in a Farey sequence through period-doubling in the peroxidase-oxidase reaction
,”
J. Phys. Chem.
98
,
2072
2077
(
1994
).
39.
L. F.
Olsen
,
T. V.
Bronnikova
, and
W. M.
Schaffer
, “
Secondary quasiperiodicity in the peroxidase-oxidase reaction
,”
Phys. Chem. Chem. Phys.
4
,
1292
1298
(
2002
).
40.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, Vol. 898, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.
41.
M.
Bier
and
T. C.
Bountis
, “
Remerging Feigenbaum trees in dynamical-systems
,”
Phys. Lett. A
104
,
239
244
(
1984
).
42.
L. F.
Olsen
, “
An enzyme reaction with a strange attractor
,”
Phys. Lett. A
94
,
454
457
(
1983
).
43.
K.
Yokota
and
I.
Yamazaki
, “
Analysis and computer-simulation of aerobic oxidation of reduced nicotinamide adenine-dinucleotide catalyzed by horseradish-peroxidase
,”
Biochemistry
16
,
1913
1920
(
1977
).
44.
V. R.
Fedkina
,
F. I.
Ataullakhanov
, and
T. V.
Bronnikova
, “
Computer-simulation of sustained oscillations in peroxidase-oxidase reaction
,”
Biophys. Chem.
19
,
259
264
(
1984
).
45.
B. D.
Aguda
and
R.
Larter
, “
Sustained oscillations and bistability in a detailed mechanism of the peroxidase oxidase reaction
,”
J. Am. Chem. Soc.
112
,
2167
2174
(
1990
).
46.
B. D.
Aguda
and
R.
Larter
, “
Periodic chaotic sequences in a detailed mechanism of the peroxidase oxidase reaction
,”
J. Am. Chem. Soc.
113
,
7913
7916
(
1991
).
47.
D. L.
Olson
,
E. P.
Williksen
, and
A.
Scheeline
, “
An experimentally based model of the peroxidase-nadh biochemical oscillator—An enzyme-mediated chemical switch
,”
J. Am. Chem. Soc.
117
,
2
15
(
1995
).
48.
C. G.
Steinmetz
and
R.
Larter
, “
The quasi-periodic route to chaos in a model of the peroxidase oxidase reaction
,”
J. Chem. Phys.
94
,
1388
1396
(
1991
).
49.
M. R.
Gallas
and
J. A. C.
Gallas
, “
Nested arithmetic progressions of oscillatory phases in Olsen’s enzyme reaction model
,”
Chaos
25
,
064603
(
2015
).
50.
M. J. B.
Hauser
and
J. A. C.
Gallas
, “
Nonchaos-mediated mixed-mode oscillations in an enzyme reaction system
,”
J. Phys. Chem. Lett.
5
,
4187
4193
(
2014
).
51.
T. V.
Bronnikova
,
W. M.
Schaffer
, and
L. F.
Olsen
, “
Quasiperiodicity in a detailed model of the peroxidase-oxidase reaction
,”
J. Chem. Phys.
105
,
10849
10859
(
1996
).
52.
T. V.
Bronnikova
,
W. M.
Schaffer
,
M. J. B.
Hauser
, and
L. F.
Olsen
, “
Routes to chaos in the peroxidase-oxidase reaction. 2. The fat torus scenario
,”
J. Phys. Chem. B
102
,
632
640
(
1998
).
53.
T. V.
Bronnikova
,
W. M.
Schaffer
, and
L. F.
Olsen
, “
Nonlinear dynamics of the peroxidase-oxidase reaction: I. Bistability and bursting oscillations at low enzyme concentrations
,”
J. Phys. Chem. B
105
,
310
321
(
2001
).
54.
W. M.
Schaffer
,
T. V.
Bronnikova
, and
L. F.
Olsen
, “
Nonlinear dynamics of the peroxidase-oxidase reaction. II. Compatibility of an extended model with previously reported model-data correspondences
,”
J. Phys. Chem. B
105
,
5331
5340
(
2001
).
55.
A.
Sensse
,
M. J. B.
Hauser
, and
M.
Eiswirth
, “
Feedback loops for Shil’nikov chaos: The peroxidase-oxidase reaction
,”
J. Chem. Phys.
125
,
014901
(
2006
).
56.
R.
Straube
,
D.
Flockerzi
,
S. C.
Muller
, and
M. J. B.
Hauser
, “
Reduction of chemical reaction networks using quasi-integrals
,”
J. Phys. Chem. A
109
,
441
450
(
2005
).
57.
M. J. B.
Hauser
and
L. F.
Olsen
, “
The role of naturally occurring phenols in inducing oscillations in the peroxidase-oxidase reaction
,”
Biochemistry
37
,
2458
2469
(
1998
).
58.
B. H. J.
Bielski
and
A. O.
Allen
, “
Mechanism of disproportionation of superoxide radicals
,”
J. Phys. Chem.
81
,
1048
1050
(
1977
).
59.
D.
Behar
,
G.
Czapski
,
J.
Rabani
,
L. M.
Dorfman
, and
H. A.
Schwarz
, “
Acid dissociation constant and decay kinetics of perhydroxyl radical
,”
J. Phys. Chem.
74
,
3209
3213
(
1970
).
60.
T.
Nishikawa
and
K.
Kaneko
, “
Fractalization of a torus as a strange nonchaotic attractor
,”
Phys. Rev. E
54
,
6114
6124
(
1996
).
61.
P.
Frederickson
,
J. L.
Kaplan
,
E. D.
Yorke
, and
J. A.
Yorke
, “
The Liapunov dimension of strange attractors
,”
J. Differ. Equ.
49
,
185
207
(
1983
).
62.
A. C.
Moller
,
M. J. B.
Hauser
, and
L. F.
Olsen
, “
Oscillations in peroxidase-catalyzed reactions and their potential function in vivo
,”
Biophys. Chem.
72
,
63
72
(
1998
).
63.
L. F.
Olsen
,
U.
Kummer
,
A. L.
Kindzelskii
, and
H. R.
Petty
, “
A model of the oscillatory metabolism of activated neutrophils
,”
Biophys. J.
84
,
69
81
(
2003
).

Supplementary Material

You do not currently have access to this content.