Many dynamical systems exhibit abrupt transitions or tipping as the control parameter is varied. In scenarios where the parameter is varied continuously, the rate of change of the control parameter greatly affects the performance of early warning signals (EWS) for such critical transitions. We study the impact of variation of the control parameter with a finite rate on the performance of EWS for critical transitions in a thermoacoustic system (a horizontal Rijke tube) exhibiting subcritical Hopf bifurcation. There is a growing interest in developing early warning signals for tipping in real systems. First, we explore the efficacy of early warning signals based on critical slowing down and fractal characteristics. From this study, lag-1 autocorrelation (AC) and Hurst exponent (H) are found to be good measures to predict the transition well before the tipping point. The warning time, obtained using AC and H, reduces with an increase in the rate of change of the control parameter following an inverse power law relation. Hence, for very fast rates, the warning time may be too short to perform any control action. Furthermore, we report the observation of a hyperexponential scaling relation between the AC and the variance of fluctuations during such a dynamic Hopf bifurcation. We construct a theoretical model for noisy Hopf bifurcation wherein the control parameter is continuously varied at different rates to study the effect of rate of change of the parameter on EWS. Similar results, including the hyperexponential scaling, are observed in the model as well.

1.
T. M.
Lenton
,
H.
Held
,
E.
Kriegler
,
J. W.
Hall
,
W.
Lucht
,
S.
Rahmstorf
, and
H. J.
Schellnhuber
, “
Tipping elements in the Earth’s climate system
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
1786
1793
(
2008
).
2.
M.
Scheffer
,
S.
Carpenter
,
J. A.
Foley
,
C.
Folke
, and
B.
Walker
, “
Catastrophic shifts in ecosystems
,”
Nature
413
,
591
(
2001
).
3.
D.
Sornette
and
A.
Johansen
, “
Large financial crashes
,”
Physica A
245
,
411
422
(
1997
).
4.
J. G.
Venegas
,
T.
Winkler
,
G.
Musch
,
M. F. V.
Melo
,
D.
Layfield
,
N.
Tgavalekos
,
A. J.
Fischman
,
R. J.
Callahan
,
G.
Bellani
, and
R. S.
Harris
, “
Self-organized patchiness in asthma as a prelude to catastrophic shifts
,”
Nature
434
,
777
(
2005
).
5.
B.
Litt
,
R.
Esteller
,
J.
Echauz
,
M.
D’Alessandro
,
R.
Shor
,
T.
Henry
,
P.
Pennell
,
C.
Epstein
,
R.
Bakay
,
M.
Dichter
et al., “
Epileptic seizures may begin hours in advance of clinical onset: A report of five patients
,”
Neuron
30
,
51
64
(
2001
).
6.
P. E.
McSharry
,
L. A.
Smith
, and
L.
Tarassenko
, “
Prediction of epileptic seizures: Are nonlinear methods relevant?
,”
Nat. Med.
9
,
241
(
2003
).
7.
S. R.
Carpenter
,
D.
Ludwig
, and
W. A.
Brock
, “
Management of eutrophication for lakes subject to potentially irreversible change
,”
Ecol. Appl.
9
,
751
771
(
1999
).
8.
National-Research-Councils
,
New Directions for Understanding Systemic Risk: A Report on a Conference Cosponsored by the Federal Reserve Bank of New York and the National Academy of Sciences
(
National Academies Press
,
2007
).
9.
R. M.
May
,
S. A.
Levin
, and
G.
Sugihara
, “
Ecology for bankers
,”
Nature
451
,
893
894
(
2008
).
10.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
, “
Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system
,”
Philos. Trans. R. Soc. A
370
,
1166
1184
(
2012
).
11.
J.
Tony
,
S.
Subarna
,
K. S.
Syamkumar
,
G.
Sudha
,
S.
Akshay
,
E. A.
Gopalakrishnan
,
E.
Surovyatkina
, and
R. I.
Sujith
, “
Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system
,”
Sci. Rep.
7
,
1
7
(
2017
).
12.
S. M.
Baer
,
T.
Erneux
, and
J.
Rinzel
, “
The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance
,”
SIAM J. Appl. Math.
49
,
55
71
(
1989
).
13.
G.
Bonciolini
,
D.
Ebi
,
E.
Boujo
, and
N.
Noiray
, “
Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation
,”
R. Soc. Open Sci.
5
,
172078
(
2018
).
14.
Y.
Park
,
Y.
Do
, and
J. M.
Lopez
, “
Slow passage through resonance
,”
Phys. Rev. E
84
,
056604
(
2011
).
15.
N.
Berglund
, “
Dynamic bifurcations: Hysteresis, scaling laws and feedback control
,”
Progr. Theor. Phys. Suppl.
139
,
325
336
(
2000
).
16.
A.
Majumdar
,
J.
Ockendon
,
P.
Howell
, and
E.
Surovyatkina
, “
Transitions through critical temperatures in nematic liquid crystals
,”
Phys. Rev. E
88
,
022501
(
2013
).
17.
V. R.
Unni
,
E. A.
Gopalakrishnan
,
K. S.
Syamkumar
,
R. I.
Sujith
,
E.
Surovyatkina
, and
J.
Kurths
, “
Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system
,”
Chaos
29
,
031102
(
2019
).
18.
M.
Schroeder
,
Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise
(
Courier Corporation
,
2009
).
19.
M.
Scheffer
,
J.
Bascompte
,
W. A.
Brock
,
V.
Brovkin
,
S. R.
Carpenter
,
V.
Dakos
,
H.
Held
,
E. H.
Van Nes
,
M.
Rietkerk
, and
G.
Sugihara
, “
Early-warning signals for critical transitions
,”
Nature
461
,
53
(
2009
).
20.
V.
Dakos
,
M.
Scheffer
,
E. H.
van Nes
,
V.
Brovkin
,
V.
Petoukhov
, and
H.
Held
, “
Slowing down as an early warning signal for abrupt climate change
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
14308
14312
(
2008
).
21.
T.
Wilkat
,
T.
Rings
, and
K.
Lehnertz
, “
No evidence for critical slowing down prior to human epileptic seizures
,”
Chaos
29
,
091104
(
2019
).
22.
T. T.
Tsotsis
,
R. C.
Sane
, and
T. H.
Lindstrom
, “
Bifurcation behavior of a catalytic reaction due to a slowly varying parameter
,”
AIChE J.
34
,
383
388
(
1988
).
23.
A. K.
Kapila
, “
Arrhenius systems: Dynamics of jump due to slow passage through criticality
,”
SIAM J. Appl. Math.
41
,
29
42
(
1981
).
24.
L. M.
Bilinsky
and
S. M.
Baer
, “
Slow passage through a Hopf bifurcation in excitable nerve cables: Spatial delays and spatial memory effects
,”
Bull. Math. Biol.
80
,
130
150
(
2018
).
25.
P.
Ashwin
,
C.
Perryman
, and
S.
Wieczorek
, “
Parameter shifts for nonautonomous systems in low dimension: Bifurcation-and rate-induced tipping
,”
Nonlinearity
30
,
2185
(
2017
).
26.
W.
Scharpf
,
M.
Squicciarini
,
D.
Bromley
,
C.
Green
,
J.
Tredicce
, and
L.
Narducci
, “
Experimental observation of a delayed bifurcation at the threshold of an argon laser
,”
Opt. Commun.
63
,
344
348
(
1987
).
27.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
,
C. A.
Magallón-García
, and
C. O.
Castillo-Morales
, “
Critical slowing down and noise-induced intermittency in bistable perception: Bifurcation analysis
,”
Biol. Cybern.
108
,
397
404
(
2014
).
28.
K. I.
Matveev
, “Thermoacoustic instabilities in the Rijke tube: Experiments and modeling,” Ph.D. thesis (California Institute of Technology, 2003).
29.
M. P.
Juniper
, “
Triggering in the horizontal Rijke tube: Non-normality, transient growth and bypass transition
,”
J. Fluid Mech.
667
,
272
308
(
2011
).
30.
E. A.
Gopalakrishnan
and
R. I.
Sujith
, “
Effect of external noise on the hysteresis characteristics of a thermoacoustic system
,”
J. Fluid Mech.
776
,
334
353
(
2015
).
31.
M. P.
Juniper
and
R. I.
Sujith
, “
Sensitivity and nonlinearity of thermoacoustic oscillations
,”
Annu. Rev. Fluid Mech.
50
,
661
689
(
2018
).
32.
S. C.
Fisher
and
S. A.
Rahman
,
Remembering the Giants: Apollo Rocket Propulsion Development
(
National Aeronautics and Space Administration
,
2009
), see https://history.nasa.gov/monograph45.pdf.
33.
T. C.
Lieuwen
and
V.
Yang
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(
American Institute of Aeronautics and Astronautics
,
2005
).
34.
C.
Fleming
, “
Turbine makers are caught in innovation trap
,”
Wall Street J.
Feb. 10, 1998; available at https://www.wsj.com/articles/SB88707004930715500.
35.
S. H.
Strogatz
,
M.
Friedman
,
A. J.
Mallinckrodt
,
S.
McKay
et al., “
Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering
,”
Comput. Phys.
8
,
532
532
(
1994
).
36.
V.
Dakos
,
E. H.
Van Nes
,
P.
D’Odorico
, and
M.
Scheffer
, “
Robustness of variance and autocorrelation as indicators of critical slowing down
,”
Ecology
93
,
264
271
(
2012
).
37.
T. M.
Lenton
,
R. J.
Myerscough
,
R.
Marsh
,
V. N.
Livina
,
A. R.
Price
,
S. J.
Cox
, and
GENIE-team
, “
Using GENIE to study a tipping point in the climate system
,”
Philos. Trans. R. Soc. A
367
,
871
884
(
2009
).
38.
V.
Guttal
and
C.
Jayaprakash
, “
Changing skewness: An early warning signal of regime shifts in ecosystems
,”
Ecol. Lett.
11
,
450
460
(
2008
).
39.
V.
Nair
and
R. I.
Sujith
, “
Multifractality in combustion noise: Predicting an impending combustion instability
,”
J. Fluid Mech.
747
,
635
655
(
2014
).
40.
R. I.
Sujith
and
V. R.
Unni
, “
Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors
,”
Phys. Fluids
32
,
061401
(
2020
).
41.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W.H. Freeman
,
New York
,
1983
), Vol. 173.
42.
H. E.
Hurst
, “
Long-term storage capacity of reservoirs
,”
Trans. Am. Soc. Civ. Eng.
116
,
770
799
(
1951
), see https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0292165.
43.
J. W.
Kantelhardt
,
S. A.
Zschiegner
,
E.
Koscielny-Bunde
,
S.
Havlin
,
A.
Bunde
, and
H. E.
Stanley
, “
Multifractal detrended fluctuation analysis of nonstationary time series
,”
Physica A
316
,
87
114
(
2002
).
44.
P. C.
Ivanov
,
L. A. N.
Amaral
,
A. L.
Goldberger
,
S.
Havlin
,
M. G.
Rosenblum
,
Z. R.
Struzik
, and
H. E.
Stanley
, “
Multifractality in human heartbeat dynamics
,”
Nature
399
,
461
(
1999
).
45.
K.
Hu
,
P. C.
Ivanov
,
M. F.
Hilton
,
Z.
Chen
,
R. T.
Ayers
,
H. E.
Stanley
, and
S. A.
Shea
, “
Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
18223
18227
(
2004
).
46.
D.
Grech
and
Z.
Mazur
, “
Can one make any crash prediction in finance using the local Hurst exponent idea?
,”
Physica A
336
,
133
145
(
2004
).
47.
N.
Vandewalle
and
M.
Ausloos
, “
Coherent and random sequences in financial fluctuations
,”
Physica A
246
,
454
459
(
1997
).
48.
D.
Grech
and
G.
Pamuła
, “
The local Hurst exponent of the financial time series in the vicinity of crashes on the polish stock exchange market
,”
Physica A
387
,
4299
4308
(
2008
).
49.
J.
Alvarez-Ramirez
,
J.
Alvarez
,
E.
Rodriguez
, and
G.
Fernandez-Anaya
, “
Time-varying Hurst exponent for US stock markets
,”
Physica A
387
,
6159
6169
(
2008
).
50.
J. A.
Matos
,
S. M.
Gama
,
H. J.
Ruskin
,
A.
Al Sharkasi
, and
M.
Crane
, “
Time and scale Hurst exponent analysis for financial markets
,”
Physica A
387
,
3910
3915
(
2008
).
51.
K.
Domino
, “
The use of the Hurst exponent to predict changes in trends on the Warsaw stock exchange
,”
Physica A
390
,
98
109
(
2011
).
52.
V.
Suyal
,
A.
Prasad
, and
H. P.
Singh
, “
Nonlinear time series analysis of sunspot data
,”
Sol. Phys.
260
,
441
449
(
2009
).
53.
A.
Kilcik
,
C. N. K.
Anderson
,
J. P.
Rozelot
,
H.
Ye
,
G.
Sugihara
, and
A.
Ozguc
, “
Nonlinear prediction of solar cycle 24
,”
Astrophys. J.
693
,
1173
(
2009
).
54.
V. R.
Unni
and
R. I.
Sujith
, “
Multifractal characteristics of combustor dynamics close to lean blowout
,”
J. Fluid Mech.
784
,
30
50
(
2015
).
55.
H.
Gotoda
,
M.
Amano
,
T.
Miyano
,
T.
Ikawa
,
K.
Maki
, and
S.
Tachibana
, “
Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor
,”
Chaos
22
,
043128
(
2012
).
56.
S.
Havlin
,
L. A. N.
Amaral
,
Y.
Ashkenazy
,
A. L.
Goldberger
,
P. C.
Ivanov
,
C.-K.
Peng
, and
H. E.
Stanley
, “
Application of statistical physics to heartbeat diagnosis
,”
Physica A
274
,
99
110
(
1999
).
57.
L.
Telesca
,
V.
Cuomo
,
V.
Lapenna
, and
M.
Macchiato
, “
A new approach to investigate the correlation between geoelectrical time fluctuations and earthquakes in a seismic area of southern Italy
,”
Geophys. Res. Lett.
28
,
4375
4378
, https://doi.org/10.1029/2001GL013467 (
2001
).
58.
B.
Qian
and
K.
Rasheed
, “Hurst exponent and financial market predictability,” in IASTED Conference on Financial Engineering and Applications (ACTA Press, 2004), pp. 203–209.
59.
E. A.
Gopalakrishnan
,
Y.
Sharma
,
T.
John
,
P. S.
Dutta
, and
R. I.
Sujith
, “
Early warning signals for critical transitions in a thermoacoustic system
,”
Sci. Rep.
6
,
1
10
(
2016
).
60.
G.
Ghanavati
,
P. D. H.
Hines
,
T. I.
Lakoba
, and
E.
Cotilla-Sanchez
, “
Understanding early indicators of critical transitions in power systems from autocorrelation functions
,”
IEEE Trans. Circuits Syst. I
61
,
2747
2760
(
2014
).
61.
K.
Wiesenfeld
, “
Noisy precursors of nonlinear instabilities
,”
J. Stat. Phys.
38
,
1071
1097
(
1985
).
62.
N.
Noiray
, “
Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in turbulent combustors
,”
J. Eng. Gas Turbine. Power
139
,
041503
(
2017
).
63.
H.
Fujisaka
and
M.
Inoue
, “
Correlation functions of temporal fluctuations
,”
Phys. Rev. A
39
,
4778
(
1989
).
64.
S. D.
Varfolomeyev
and
K. G.
Gurevich
, “
The hyperexponential growth of the human population on a macrohistorical scale
,”
J. Theor. Biol.
212
,
367
372
(
2001
).
65.
E. A. F. E.
Ihlen
, “
Introduction to multifractal detrended fluctuation analysis in Matlab
,”
Front. Physiol.
3
,
141
(
2012
).
You do not currently have access to this content.