Noise-induced variability of thermochemical processes in a continuous stirred tank reactor is studied on the basis of the Zeldovich–Semenov dynamical model. For the deterministic variant of this model, mono- and bistability parametric zones as well as local and global bifurcations are determined. Noise-induced transitions between coexisting attractors (equilibria and cycles) and stochastic excitement with spike oscillations are investigated by direct numerical simulation and the analytical approach based on the stochastic sensitivity technique. For the stochastic model, the phenomenon of coherence resonance is discovered and studied.

1.
C.
van Heerden
, “
Autothermic processes
,”
Industrial Eng. Chem.
45
,
1242
1247
(
1953
).
2.
D. A.
Frank-Kamenetskii
,
Diffusion and Heat Exchange in Chemical Kinetics
(
Princeton University Press
,
Princeton
,
1955
).
3.
L. D.
Schmidt
,
The Engineering of Chemical Reactions
(
Oxford University Press
,
New York
,
1998
).
4.
M. E.
Davis
,
Fundamentals of Chemical Reaction Engineering
(
McGraw-Hill
,
Boston
,
2003
).
5.
A.
Uppal
,
W. H.
Ray
, and
A. B.
Poore
, “
On the dynamic behavior of continuous stirred tank reactors
,”
Chem. Eng. Sci.
29
,
967
985
(
1974
).
6.
A.
Uppal
,
W. H.
Ray
, and
A. B.
Poore
, “
The classification of the dynamic behavior of continuous stirred tank reactors—Influence of reactor resident time
,”
Chem. Eng. Sci.
31
,
205
214
(
1976
).
7.
A. L.
Kawczyński
and
J.
Gorecki
, “
Molecular dynamics simulations of sustained oscillations in a thermochemical system
,”
J. Phys. Chem.
96
,
1060
1067
(
1992
).
8.
V. S.
Sheplev
,
S. A.
Treskov
, and
E. P.
Volokitin
, “
Dynamics of a stirred tank reactor with first-order reaction
,”
Chem. Eng. Sci.
53
,
3719
3728
(
1998
).
9.
A. L.
Kawczyński
and
B.
Nowakowski
, “
Master equation simulations of a model of a thermochemical system
,”
Phys. Rev. E
68
,
036218
(
2003
).
10.
V. I.
Bykov
,
S. B.
Tsybenova
, and
G.
Yablonsky
,
Chemical Complexity via Simple Models
(
De Gruyter
,
Berlin
,
2018
).
11.
D. A.
Vaganov
,
N. G.
Samoilenko
, and
V. G.
Abramov
, “
Periodic regimes of continuous stirred tank reactors
,”
Chem. Eng. Sci.
33
,
1131
1140
(
1978
).
12.
V. I.
Bykov
and
S. B.
Tsybenova
, “
Parametric analysis of the simplest model of the theory of thermal explosion—The Zel’dovich–Semenov model
,”
Combust. Explos. Shock Waves
37
,
523
534
(
2001
).
13.
V. I.
Bykov
,
L. A.
Serafimov
, and
S. B.
Tsybenova
, “
Emergency starting regimes of a continuous stirred tank reactor
,”
Theoret. Found. Chem. Eng.
49
,
361
369
(
2015
).
14.
N. N.
Semenov
, “
Theories of combustion processes
,”
Z. Phys. Chem.
48
,
571
582
(
1928
).
15.
J. B.
Zeldovich
and
J. A.
Zysin
, “
On the theory of heat stress. Exothermic reaction in the jet
,”
Z. Tekhn. Fiz.
11
,
501
508
(
1941
).
16.
W.
Horsthemke
and
R.
Lefever
,
Noise-Induced Transitions
(
Springer
,
Berlin
,
1984
).
17.
V. S.
Anishchenko
,
V. V.
Astakhov
,
A. B.
Neiman
,
T. E.
Vadivasova
, and
L.
Schimansky-Geier
,
Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development
(
Springer-Verlag
,
Berlin
,
2007
).
18.
M. D.
McDonnell
,
N. G.
Stocks
,
C. E. M.
Pearce
, and
D.
Abbott
,
Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
(
Cambridge University Press
,
2008
).
19.
L.
Gammaitoni
,
P.
Hanggi
,
P.
Jung
, and
F.
Marchesoni
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
(
1
),
223
287
(
1998
).
20.
A. S.
Pikovsky
and
J.
Kurths
, “
Coherence resonance in a noise-driven excitable system
,”
Phys. Rev. Lett.
78
,
775
778
(
1997
).
21.
B.
Lindner
,
J.
Garcia-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
, “
Effects of noise in excitable systems
,”
Phys. Rep.
392
,
321
424
(
2004
).
22.
J. B.
Gao
,
S. K.
Hwang
, and
J. M.
Liu
, “
When can noise induce chaos?
,”
Phys. Rev. Lett.
82
(
6
),
1132
1135
(
1999
).
23.
Y.-C.
Lai
and
T.
Tel
,
Transient Chaos. Complex Dynamics on Finite Time Scales
(
Springer-Verlag
,
New York
,
2011
).
24.
I.
Bashkirtseva
,
L.
Ryashko
, and
E.
Slepukhina
, “
Noise-induced oscillation bistability and transition to chaos in FitzHugh–Nagumo model
,”
Fluctuat. Noise Lett.
13
(
1
),
1450004
(
2014
).
25.
L.
Arnold
,
Random Dynamical Systems
(
Springer-Verlag
,
Berlin
,
1998
).
26.
M. A.
Zaks
,
X.
Sailer
,
L.
Schimansky-Geier
, and
A. B.
Neiman
, “
Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems
,”
Chaos
15
(
2
),
026117
(
2005
).
27.
M. I.
Freidlin
and
A. D.
Wentzell
,
Random Perturbations of Dynamical Systems
(
Springer-Verlag
,
New York
,
1984
).
28.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer-Verlag
,
Berlin
,
1983
).
29.
I. A.
Bashkirtseva
and
L. B.
Ryashko
, “
Sensitivity analysis of stochastically forced Lorenz model cycles under period doubling bifurcations
,”
Dyn. Syst. Appl.
11
(
2
),
293
310
(
2002
).
30.
I.
Bashkirtseva
,
L.
Ryashko
, and
P.
Stikhin
, “
Noise-induced backward bifurcations of stochastic 3D-cycles
,”
Fluctuat. Noise Lett.
9
,
89
106
(
2010
).
31.
J.
Jungeilges
,
T.
Ryazanova
,
A.
Mitrofanova
, and
I.
Popova
, “
Sensitivity analysis of consumption cycles
,”
Chaos
28
(
5
),
055905
(
2018
).
32.
I.
Bashkirtseva
, “
Stochastic sensitivity of systems driven by colored noise
,”
Physica A
505
,
729
736
(
2018
).
33.
I.
Bashkirtseva
,
G.
Chen
, and
L.
Ryashko
, “
Analysis of stochastic cycles in the Chen system
,”
Int. J. Bifurcat. Chaos
20
(
05
),
1439
1450
(
2010
).
34.
I.
Bashkirtseva
,
G.
Chen
, and
L.
Ryashko
, “
Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system
,”
Chaos
22
,
033104
(
2012
).
35.
E. S.
Slepukhina
, “
Sensitivity analysis of noise-induced mixed-mode oscillations in Morris–Lecar neuron model
,”
Math. Model. Nat. Phenom.
12
(
4
),
74
90
(
2017
).
36.
L.
Ryashko
, “
Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis
,”
Chaos
28
(
3
),
033602
(
2018
).
37.
I.
Bashkirtseva
, “
Crises, noise, and tipping in the Hassell population model
,”
Chaos
28
,
033603
(
2018
).
38.
A.
Belyaev
and
T.
Ryazanova
, “
Stochastic sensitivity of attractors for a piecewise smooth neuron model
,”
J. Differ. Eqs. Appl.
25
,
1468
1487
(
2019
).
39.
L.
Ryashko
and
I.
Bashkirtseva
, “
Stochastic sensitivity analysis and control for ecological model with the Allee effect
,”
Math. Model. Nat. Phenom.
10
(
2
),
130
140
(
2015
).
40.
I.
Bashkirtseva
, “
Controlling the stochastic sensitivity in thermochemical systems under incomplete information
,”
Kybernetika
54
,
96
109
(
2018
).
You do not currently have access to this content.