Noise-induced variability of thermochemical processes in a continuous stirred tank reactor is studied on the basis of the Zeldovich–Semenov dynamical model. For the deterministic variant of this model, mono- and bistability parametric zones as well as local and global bifurcations are determined. Noise-induced transitions between coexisting attractors (equilibria and cycles) and stochastic excitement with spike oscillations are investigated by direct numerical simulation and the analytical approach based on the stochastic sensitivity technique. For the stochastic model, the phenomenon of coherence resonance is discovered and studied.
REFERENCES
1.
C.
van Heerden
, “Autothermic processes
,” Industrial Eng. Chem.
45
, 1242
–1247
(1953
). 2.
D. A.
Frank-Kamenetskii
, Diffusion and Heat Exchange in Chemical Kinetics
(Princeton University Press
, Princeton
, 1955
).3.
L. D.
Schmidt
, The Engineering of Chemical Reactions
(Oxford University Press
, New York
, 1998
).4.
M. E.
Davis
, Fundamentals of Chemical Reaction Engineering
(McGraw-Hill
, Boston
, 2003
).5.
A.
Uppal
, W. H.
Ray
, and A. B.
Poore
, “On the dynamic behavior of continuous stirred tank reactors
,” Chem. Eng. Sci.
29
, 967
–985
(1974
). 6.
A.
Uppal
, W. H.
Ray
, and A. B.
Poore
, “The classification of the dynamic behavior of continuous stirred tank reactors—Influence of reactor resident time
,” Chem. Eng. Sci.
31
, 205
–214
(1976
). 7.
A. L.
Kawczyński
and J.
Gorecki
, “Molecular dynamics simulations of sustained oscillations in a thermochemical system
,” J. Phys. Chem.
96
, 1060
–1067
(1992
). 8.
V. S.
Sheplev
, S. A.
Treskov
, and E. P.
Volokitin
, “Dynamics of a stirred tank reactor with first-order reaction
,” Chem. Eng. Sci.
53
, 3719
–3728
(1998
). 9.
A. L.
Kawczyński
and B.
Nowakowski
, “Master equation simulations of a model of a thermochemical system
,” Phys. Rev. E
68
, 036218
(2003
). 10.
V. I.
Bykov
, S. B.
Tsybenova
, and G.
Yablonsky
, Chemical Complexity via Simple Models
(De Gruyter
, Berlin
, 2018
).11.
D. A.
Vaganov
, N. G.
Samoilenko
, and V. G.
Abramov
, “Periodic regimes of continuous stirred tank reactors
,” Chem. Eng. Sci.
33
, 1131
–1140
(1978
). 12.
V. I.
Bykov
and S. B.
Tsybenova
, “Parametric analysis of the simplest model of the theory of thermal explosion—The Zel’dovich–Semenov model
,” Combust. Explos. Shock Waves
37
, 523
–534
(2001
). 13.
V. I.
Bykov
, L. A.
Serafimov
, and S. B.
Tsybenova
, “Emergency starting regimes of a continuous stirred tank reactor
,” Theoret. Found. Chem. Eng.
49
, 361
–369
(2015
). 14.
15.
J. B.
Zeldovich
and J. A.
Zysin
, “On the theory of heat stress. Exothermic reaction in the jet
,” Z. Tekhn. Fiz.
11
, 501
–508
(1941
).16.
17.
V. S.
Anishchenko
, V. V.
Astakhov
, A. B.
Neiman
, T. E.
Vadivasova
, and L.
Schimansky-Geier
, Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development
(Springer-Verlag
, Berlin
, 2007
).18.
M. D.
McDonnell
, N. G.
Stocks
, C. E. M.
Pearce
, and D.
Abbott
, Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
(Cambridge University Press
, 2008
).19.
L.
Gammaitoni
, P.
Hanggi
, P.
Jung
, and F.
Marchesoni
, “Stochastic resonance
,” Rev. Mod. Phys.
70
(1
), 223
–287
(1998
). 20.
A. S.
Pikovsky
and J.
Kurths
, “Coherence resonance in a noise-driven excitable system
,” Phys. Rev. Lett.
78
, 775
–778
(1997
). 21.
B.
Lindner
, J.
Garcia-Ojalvo
, A.
Neiman
, and L.
Schimansky-Geier
, “Effects of noise in excitable systems
,” Phys. Rep.
392
, 321
–424
(2004
). 22.
J. B.
Gao
, S. K.
Hwang
, and J. M.
Liu
, “When can noise induce chaos?
,” Phys. Rev. Lett.
82
(6
), 1132
–1135
(1999
). 23.
Y.-C.
Lai
and T.
Tel
, Transient Chaos. Complex Dynamics on Finite Time Scales
(Springer-Verlag
, New York
, 2011
).24.
I.
Bashkirtseva
, L.
Ryashko
, and E.
Slepukhina
, “Noise-induced oscillation bistability and transition to chaos in FitzHugh–Nagumo model
,” Fluctuat. Noise Lett.
13
(1
), 1450004
(2014
). 25.
L.
Arnold
, Random Dynamical Systems
(Springer-Verlag
, Berlin
, 1998
).26.
M. A.
Zaks
, X.
Sailer
, L.
Schimansky-Geier
, and A. B.
Neiman
, “Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems
,” Chaos
15
(2
), 026117
(2005
). 27.
M. I.
Freidlin
and A. D.
Wentzell
, Random Perturbations of Dynamical Systems
(Springer-Verlag
, New York
, 1984
).28.
C. W.
Gardiner
, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(Springer-Verlag
, Berlin
, 1983
).29.
I. A.
Bashkirtseva
and L. B.
Ryashko
, “Sensitivity analysis of stochastically forced Lorenz model cycles under period doubling bifurcations
,” Dyn. Syst. Appl.
11
(2
), 293
–310
(2002
).30.
I.
Bashkirtseva
, L.
Ryashko
, and P.
Stikhin
, “Noise-induced backward bifurcations of stochastic 3D-cycles
,” Fluctuat. Noise Lett.
9
, 89
–106
(2010
). 31.
J.
Jungeilges
, T.
Ryazanova
, A.
Mitrofanova
, and I.
Popova
, “Sensitivity analysis of consumption cycles
,” Chaos
28
(5
), 055905
(2018
). 32.
I.
Bashkirtseva
, “Stochastic sensitivity of systems driven by colored noise
,” Physica A
505
, 729
–736
(2018
). 33.
I.
Bashkirtseva
, G.
Chen
, and L.
Ryashko
, “Analysis of stochastic cycles in the Chen system
,” Int. J. Bifurcat. Chaos
20
(05
), 1439
–1450
(2010
). 34.
I.
Bashkirtseva
, G.
Chen
, and L.
Ryashko
, “Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system
,” Chaos
22
, 033104
(2012
). 35.
E. S.
Slepukhina
, “Sensitivity analysis of noise-induced mixed-mode oscillations in Morris–Lecar neuron model
,” Math. Model. Nat. Phenom.
12
(4
), 74
–90
(2017
). 36.
L.
Ryashko
, “Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis
,” Chaos
28
(3
), 033602
(2018
). 37.
I.
Bashkirtseva
, “Crises, noise, and tipping in the Hassell population model
,” Chaos
28
, 033603
(2018
). 38.
A.
Belyaev
and T.
Ryazanova
, “Stochastic sensitivity of attractors for a piecewise smooth neuron model
,” J. Differ. Eqs. Appl.
25
, 1468
–1487
(2019
). 39.
L.
Ryashko
and I.
Bashkirtseva
, “Stochastic sensitivity analysis and control for ecological model with the Allee effect
,” Math. Model. Nat. Phenom.
10
(2
), 130
–140
(2015
). 40.
I.
Bashkirtseva
, “Controlling the stochastic sensitivity in thermochemical systems under incomplete information
,” Kybernetika
54
, 96
–109
(2018
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.