The effect of levodopa in alleviating the symptoms of Parkinson’s disease is altered in a highly nonlinear manner as the disease progresses. This can be attributed to different compensation mechanisms taking place in the basal ganglia where the dopaminergic neurons are progressively lost. This alteration in the effect of levodopa complicates the optimization of a drug regimen. The present work aims at investigating the nonlinear dynamics of Parkinson’s disease and its therapy through mechanistic mathematical modeling. Using a holistic approach, a pharmacokinetic model of levodopa was combined to a dopamine dynamics and a neurocomputational model of basal ganglia. The influence of neuronal death on these different mechanisms was also integrated. Using this model, we were able to investigate the nonlinear relationships between the levodopa plasma concentration, the dopamine brain concentration, and a response to a motor task. Variations in dopamine concentrations in the brain for different levodopa doses were also studied. Finally, we investigated the narrowing of a levodopa therapeutic index with the progression of the disease as a result of these nonlinearities. In conclusion, various consequences of nonlinear dynamics in Parkinson’s disease treatment were studied by developing an integrative model. This model paves the way toward individualization of a dosing regimen. Using sensor based information, the parameters of the model could be fitted to individual data to propose optimal individual regimens.

1.
S.
Sharma
,
C. S.
Moon
,
A.
Khogali
,
A.
Haidous
,
A.
Chabenne
,
C.
Ojo
,
M.
Jelebinkov
,
Y.
Kurdi
, and
M.
Ebadi
, “
Biomarkers in Parkinson’s disease (recent update)
,”
Neurochem. Int.
63
,
201
229
(
2013
).
2.
N.
Holford
and
J. G.
Nutt
, “
Disease progression, drug action and Parkinson’s disease: Why time cannot be ignored
,”
Eur. J. Clin. Pharmacol.
64
,
207
216
(
2008
).
3.
B. R.
Thanvi
and
T. C. N.
Lo
, “
Long term motor complications of levodopa: Clinical features, mechanisms, and management strategies
,”
Postgrad. Med. J.
80
,
452
458
(
2004
).
4.
Y.
Agid
, “
Parkinson’s disease: Pathophysiology
,”
Lancet
337
,
1321
1324
(
1991
).
5.
M. J.
Zigmond
,
E. D.
Abercrombie
,
T. W.
Berger
,
A. A.
Grace
, and
E. M.
Stricker
, “
Compensations after lesions of central dopaminergic neurons: Some clinical and basic implications
,”
Trends Neurosci.
13
,
290
296
(
1990
).
6.
M.
Haeri
,
Y.
Sarbaz
, and
S.
Gharibzadeh
, “
Modeling the Parkinson’s tremor and its treatments
,”
J. Theor. Biol.
236
,
311
322
(
2005
).
7.
G.
Gangadhar
,
D.
Joseph
,
A. V.
Srinivasan
,
D.
Subramanian
,
R. G.
Shivakeshavan
,
N.
Shobana
, and
V. S.
Chakravarthy
, “
A computational model of Parkinsonian handwriting that highlights the role of the indirect pathway in the basal ganglia
,”
Hum. Mov. Sci.
28
,
602
618
(
2009
).
8.
V.
Cutsuridis
and
S.
Perantonis
, “
A neural network model of Parkinson’s disease bradykinesia
,”
Neural Netw.
19
,
354
374
(
2006
).
9.
C.
Baston
,
M.
Contin
,
G. C.
Buonaura
,
P.
Cortelli
, and
M.
Ursino
, “
A mathematical model of levodopa medication effect on basal ganglia in Parkinson’s disease: An application to the alternate finger tapping task
,”
Front. Hum. Neurosci.
10
,
280
(
2016
).
10.
L. A.
Koelman
and
M. M.
Lowery
, “
Beta-band resonance and intrinsic oscillations in a biophysically detailed model of the subthalamic nucleus-globus pallidus network
,”
Front. Comput. Neurosci.
13
,
77
(
2019
).
11.
J. E.
Rubin
and
D.
Terman
, “
High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model
,”
J. Comput. Neurosci.
16
,
211
235
(
2004
).
12.
C.
Liu
,
C.
Zhou
,
J.
Wang
,
C.
Fietkiewicz
, and
K. A.
Loparo
, “
The role of coupling connections in a model of the cortico-basal ganglia-thalamocortical neural loop for the generation of beta oscillations
,”
Neural Netw.
123
,
381
392
(
2019
).
13.
M. C.
Reed
,
J.
Best
, and
H. F.
Nijhout
, “
Passive and active stabilization of dopamine in the striatum
,”
Biosci. Hypotheses
2
,
240
244
(
2009
).
14.
M. C.
Reed
,
H. F.
Nijhout
, and
J. A.
Best
, “
Mathematical insights into the effects of levodopa
,”
Front. Integr. Neurosci.
6
,
21
(
2012
).
15.
J. K.
Dreyer
, “
Three mechanisms by which striatal denervation causes breakdown of dopamine signaling
,”
J. Neurosci.
34
,
12444
12456
(
2014
).
16.
P. L. S.
Chan
,
J. G.
Nutt
, and
N. H. G.
Holford
, “
Modeling the short- and long-duration responses to exogenous levodopa and to endogenous levodopa production in Parkinson’s disease
,”
J. Pharmacokinet. Pharmacodyn.
31
,
243
268
(
2004
).
17.
M.
Senek
,
D.
Nyholm
, and
E. I.
Nielsen
, “
Population pharmacokinetics of levodopa/carbidopa microtablets in healthy subjects and Parkinson’s disease patients
,”
Eur. J. Clin. Pharmacol.
74
,
1299
1307
(
2018
).
18.
M.
Contin
,
R.
Riva
,
P.
Martinelli
,
F.
Albani
,
P.
Avoni
, and
A.
Baruzzi
, “
Levodopa therapy monitoring in patients with Parkinson disease: A kinetic-dynamic approach
,”
Ther. Drug Monit.
23
,
621
629
(
2001
).
19.
M.
Contin
,
P.
Martinelli
,
R.
Riva
,
M.
Dondi
,
S.
Fanti
,
C.
Pettinato
,
C.
Scaglione
,
F.
Albani
, and
A.
Baruzzi
, “
Assessing dopaminergic function in Parkinson’s disease: Levodopa kinetic-dynamic modeling and SPECT
,”
J. Neurol.
250
,
1475
1481
(
2003
).
20.
M.
Dietz
,
S.
Harder
,
J.
Graff
,
G.
Künig
,
P.
Vontobel
,
K. L.
Leenders
, and
H.
Baas
, “
Levodopa pharmacokinetic-pharmacodynamic modeling and 6-[18F]levodopa positron emission tomography in patients with Parkinson’s disease
,”
Clin. Pharmacol. Ther.
70
,
33
41
(
2001
).
21.
K. J.
Black
,
H. K.
Acevedo
, and
J. M.
Koller
, “
Dopamine buffering capacity imaging: A pharmacodynamic FMRI method for staging Parkinson disease
,”
Front. Neurol.
11
,
370
(
2020
).
22.
S.
Harder
and
H.
Baas
, “
Concentration-response relationship of levodopa in patients at different stages of Parkinson’s disease
,”
Clin. Pharmacol. Ther.
64
,
183
191
(
1998
).
23.
J. A.
Best
,
H. F.
Nijhout
, and
M. C.
Reed
, “
Homeostatic mechanisms in dopamine synthesis and release: A mathematical model
,”
Theor. Biol. Med. Modell.
6
,
21
(
2009
).
24.
B.
Hille
, “
G protein-coupled mechanisms and nervous signaling
,”
Neuron
9
,
187
195
(
1992
).
25.
J. W.
Mink
, “
The basal ganglia: Focused selection and inhibition of competing motor programs
,”
Prog. Neurobiol.
50
,
381
425
(
1996
).
26.
R.
Cachope
and
J. F.
Cheer
, “
Local control of striatal dopamine release
,”
Front. Behav. Neurosci.
8
,
188
(
2014
).
27.
S.
Hisahara
and
S.
Shimohama
, “
Dopamine receptors and Parkinson’s disease
,”
Int. J. Med. Chem.
2011
,
1
16
.
28.
B.
Picconi
,
D.
Centonze
,
S.
Rossi
,
G.
Bernardi
, and
P.
Calabresi
, “
Therapeutic doses of l-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism
,”
Brain
127
,
1661
1669
(
2004
).
29.
M.
Nord
,
P.
Zsigmond
,
A.
Kullman
, and
N.
Dizdar
, “
Levodopa pharmacokinetics in brain after both oral and intravenous levodopa in one patient with advanced Parkinson’s disease
,”
Adv. Parkinsons Dis.
06
,
52
66
(
2017
).
30.
D.
Sulzer
,
S. J.
Cragg
, and
M. E.
Rice
, “
Striatal dopamine neurotransmission: Regulation of release and uptake
,”
Basal Ganglia
6
,
123
148
(
2016
).
31.
W.
Poewe
,
A.
Antonini
,
J. C.
Zijlmans
,
P. R.
Burkhard
, and
F.
Vingerhoets
, “
Levodopa in the treatment of Parkinson’s disease: An old drug still going strong
,”
Clin. Interv. Aging
5
,
229
238
(
2010
).
32.
G.
Fabbrini
,
J.
Juncos
,
M. M.
Mouradian
,
C.
Serrati
, and
T. N.
Chase
, “
Levodopa pharmacokinetic mechanisms and motor fluctuations in Parkinson’s disease
,”
Ann. Neurol.
21
,
370
376
(
1987
).
33.
W.
Olanow
,
A. H.
Schapira
, and
O.
Rascol
, “
Continuous dopamine-receptor stimulation in early Parkinson’s disease
,”
Trends Neurosci.
23
,
S117
S126
(
2000
).
34.
H.
Baas
,
F.
Zehrden
,
R.
Selzer
,
R.
Kohnen
,
J.
Loetsch
, and
S.
Harder
, “
Pharmacokinetic-pharmacodynamic relationship of levodopa with and without tolcapone in patients with Parkinson’s disease
,”
Clin. Pharmacokinet.
40
,
383
393
(
2001
).
35.
M.
Contin
,
R.
Riva
,
P.
Martinelli
,
P.
Cortelli
,
F.
Albani
, and
A.
Baruzzi
, “
A levodopa kinetic-dynamic study of the rate of progression in Parkinson’s disease
,”
Neurology
51
,
1075
1080
(
1998
).
36.
D.
Deleu
,
M. G.
Northway
, and
Y.
Hanssens
, “
Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease
,”
Clin. Pharmacokinet.
41
,
261
309
(
2002
).
37.
P. L. S.
Chan
,
J. G.
Nutt
, and
N. H. G.
Holford
, “
Pharmacokinetic and pharmacodynamic changes during the first four years of levodopa treatment in Parkinson’s disease
,”
J. Pharmacokinet. Pharmacodyn.
32
,
459
484
(
2005
).
38.
J. G.
Nutt
,
W. R.
Woodward
,
J. H.
Carter
, and
S. T.
Gancher
, “
Effect of long-term therapy on the pharmacodynamics of levodopa. Relation to on-off phenomenon
,”
Arch. Neurol.
49
,
1123
1130
(
1992
).
39.
D. J.
Brooks
, “
Optimizing levodopa therapy for Parkinson’s disease with levodopa/carbidopa/entacapone: Implications from a clinical and patient perspective
,”
Neuropsychiatr. Dis. Treat.
4
,
39
47
(
2008
).
40.
S.
Greffard
,
M.
Verny
,
A.-M.
Bonnet
,
J.-Y.
Beinis
,
C.
Gallinari
,
S.
Meaume
,
F.
Piette
,
J.-J.
Hauw
, and
C.
Duyckaerts
, “
Motor score of the unified parkinson disease rating scale as a good predictor of Lewy body associated neuronal loss in the substantia nigra
,”
Arch. Neurol.
63
,
584
(
2006
).
41.
I.
Thomas
,
M.
Alam
,
F.
Bergquist
,
D.
Johansson
,
M.
Memedi
,
D.
Nyholm
, and
J.
Westin
, “
Sensor-based algorithmic dosing suggestions for oral administration of levodopa/carbidopa microtablets for Parkinson’s disease: A first experience
,”
J. Neurol.
266
,
651
658
(
2019
).

Supplementary Material

You do not currently have access to this content.