Non-monotonic area-preserving maps violate the twist condition locally in phase space, giving rise to shearless invariant barriers surrounded by twin island chains in these regions of phase space. For the extended standard nontwist map, with two resonant perturbations with distinct wave numbers, we investigate the presence of such barriers and their associated island chains and compare our results with those that have been reported for the standard nontwist map with only one perturbation. Furthermore, we determine in the control parameter space the existence of the shearless barrier and the influence of the additional wave number on this condition. We show that only for odd second wave numbers are the twin island chains symmetrical. Moreover, for even wave numbers, the lack of symmetry between the chains of twin islands generates a ratchet effect that implies a directed transport in the phase space.

1.
R. S.
MacKay
,
J. D.
Meiss
, and
I. C.
Percival
, “
Stochasticity and transport in Hamiltonian systems
,”
Phys. Rev. Lett.
52
,
697
(
1984
).
2.
R. S.
MacKay
,
J. D.
Meiss
, and
I. C.
Percival
, “
Transport in Hamiltonian systems
,”
Physica D
13
,
55
81
(
1984
).
3.
G.
Boffetta
,
G.
Lacorata
,
G.
Redaelli
, and
A.
Vulpiani
, “
Detecting barriers to transport: A review of different techniques
,”
Physica D
159
,
58
70
(
2001
).
4.
M. F.
Carusela
,
A. J.
Fendrik
, and
L.
Romanelli
, “
Transport and dynamical properties of inertial ratchets
,”
Physica A
388
,
4017
4024
(
2009
).
5.
J.
Gong
and
P.
Brumer
, “
Directed anomalous diffusion without a biased field: A ratchet accelerator
,”
Phys. Rev. E
70
,
016202
(
2004
).
6.
I.
Dana
and
V. B.
Roitberg
, “
Weak-chaos ratchet accelerator
,”
Phys. Rev. E
83
,
066213
(
2011
).
7.
N. A. C.
Hutchings
,
M. R.
Isherwood
,
T.
Jonckheere
, and
T. S.
Monteiro
, “
Chaotic Hamiltonian ratchets for pulsed periodic double-well potentials: Classical correlations and the ratchet current
,”
Phys. Rev. E
70
,
036205
(
2004
).
8.
A.
Celestino
,
C.
Manchein
,
H. A.
Albuquerque
, and
M. W.
Beims
, “
Ratchet transport and periodic structures in parameter space
,”
Phys. Rev. Lett.
106
,
234101
(
2011
).
9.
S.
Denisov
,
J.
Klafter
,
M.
Urbakh
, and
S.
Flach
, “
DC currents in Hamiltonian systems by Lévy flights
,”
Physica D
170
,
131
142
(
2002
).
10.
E.
Neumann
and
A.
Pikovsky
, “
Quasiperiodically driven Josephson junctions: Strange nonchaotic attractors, symmetries and transport
,”
Eur. Phys. J. B
26
,
219
228
(
2002
).
11.
M.
Vlad
,
F.
Spineanu
, and
S.
Benkadda
, “
Impurity pinch from a ratchet process
,”
Phys. Rev. Lett.
96
,
085001
(
2006
).
12.
A. B.
Schelin
and
K. H.
Spatschek
, “
Directed chaotic transport in the tokamap with mixed phase space
,”
Phys. Rev. E
81
,
016205
(
2010
).
13.
C.
Mennerat-Robilliard
,
D.
Lucas
,
S.
Guibal
,
J.
Tabosa
,
C.
Jurczak
,
J.-Y.
Courtois
, and
G.
Grynberg
, “
Ratchet for cold rubidium atoms: The asymmetric optical lattice
,”
Phys. Rev. Lett.
82
,
851
(
1999
).
14.
P.
Reimann
,
M.
Grifoni
, and
P.
Hänggi
, “
Quantum ratchets
,”
Phys. Rev. Lett.
79
,
10
(
1997
).
15.
L.
Wang
,
G.
Benenti
,
G.
Casati
, and
B.
Li
, “
Ratchet effect and the transporting islands in the chaotic sea
,”
Phys. Rev. Lett.
99
,
244101
(
2007
).
16.
D.
del Castillo-Negrete
,
J. M.
Greene
, and
P. J.
Morrison
, “
Area preserving nontwist maps: Periodic orbits and transition to chaos
,”
Physica D
91
,
1
23
(
1996
).
17.
D.
del Castillo-Negrete
and
P. J.
Morrison
, “
Chaotic transport by Rossby waves in shear flow
,”
Phys. Fluids A Fluid Dyn.
5
,
948
965
(
1993
).
18.
P. J.
Morrison
, “
Magnetic field lines, Hamiltonian dynamics, and nontwist systems
,”
Phys. Plasmas
7
,
2279
2289
(
2000
).
19.
I.
Caldas
,
R.
Viana
,
J.
Szezech
,
J.
Portela
,
J.
Fonseca
,
M.
Roberto
,
C.
Martins
, and
E.
da Silva
, “
Nontwist symplectic maps in tokamaks
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
2021
2030
(
2012
).
20.
A.
Haro
and
R.
de la Llave
, “
Efficient and reliable algorithms for the computation of non-twist invariant circles
” (unpublished).
21.
J. S. E.
Portela
,
I. L.
Caldas
,
R. L.
Viana
, and
P. J.
Morrison
, “
Diffusive transport through a nontwist barrier in tokamaks
,”
Int. J. Bifurc. Chaos
17
,
1589
1598
(
2007
).
22.
A.
Wurm
and
K. M.
Martini
, “
Breakup of inverse golden mean shearless tori in the two-frequency standard nontwist map
,”
Phys. Lett. A
377
,
622
627
(
2013
).
23.
J. M.
Greene
and
J.
Mao
, “
Higher-order fixed points of the renormalisation operator for invariant circles
,”
Nonlinearity
3
,
69
(
1990
).
24.
M.
Mugnaine
,
A. C.
Mathias
,
M. S.
Santos
,
A. M.
Batista
,
J. D.
Szezech, Jr.
, and
R. L.
Viana
, “
Dynamical characterization of transport barriers in nontwist Hamiltonian systems
,”
Phys. Rev. E
97
,
012214
(
2018
).
25.
J. D.
Szezech, Jr.
,
I. L.
Caldas
,
S. R.
Lopes
,
P. J.
Morrison
, and
R. L.
Viana
, “
Effective transport barriers in nontwist systems
,”
Phys. Rev. E
86
,
036206
(
2012
).
26.
J. D.
Szezech, Jr.
,
I. L.
Caldas
,
S. R.
Lopes
,
R. L.
Viana
, and
P. J.
Morrison
, “
Transport properties in nontwist area-preserving maps
,”
Chaos
19
,
043108
(
2009
).
27.
S. R.
Lopes
,
J. D.
Szezech Jr.
,
R. F.
Pereira
,
A. A.
Bertolazzo
, and
R. L.
Viana
, “
Anomalous transport induced by nonhyperbolicity
,”
Phys. Rev. E
86
,
016216
(
2012
).
28.
T.
Cheon
,
P.
Exner
, and
P.
Šeba
, “
Extended standard map with spatio-temporal asymmetry
,”
J. Phys. Soc. Jpn.
72
,
1087
1091
(
2003
).
29.
A.
Wurm
,
A.
Apte
, and
P. J.
Morrison
, “
On reconnection phenomena in the standard nontwist map
,”
Braz. J. Phys.
34
,
1700
1706
(
2004
).
30.
S.
Shinohara
and
Y.
Aizawa
, “
Indicators of reconnection processes and transition to global chaos in nontwist maps
,”
Prog. Theor. Phys.
100
,
219
233
(
1998
).
31.
A.
Daza
,
A.
Wagemakers
,
B.
Georgeot
,
D.
Guéry-Odelin
, and
M. A.
Sanjuán
, “
Basin entropy: A new tool to analyze uncertainty in dynamical systems
,”
Sci. Rep.
6
,
31416
(
2016
).
32.
I. L.
Caldas
,
R. L.
Viana
,
C. V.
Abud
,
J. C. D.
Fonseca
,
Z. O.
Guimarães Filho
,
T.
Kroetz
,
F. A.
Marcus
,
A. B.
Schelin
,
J. D.
Szezech Jr
,
D. L.
Toufen
et al., “
Shearless transport barriers in magnetically confined plasmas
,”
Plasma Phys. Control. Fusion
54
,
124035
(
2012
).
You do not currently have access to this content.