We study the advection of blood particles in the carotid bifurcation, a site that is prone to plaque development. Previously, it has been shown that chaotic advection can take place in blood flows with diseases. Here, we show that even in a healthy scenario, chaotic advection can take place. To understand how the particle dynamics is affected by the emergence and growth of a plaque, we study the carotid bifurcation in three cases: a healthy bifurcation, a bifurcation with a mild stenosis, and the another with a severe stenosis. The result is non-intuitive: there is less chaos for the mild stenosis case even when compared to the healthy, non-stenosed, bifurcation. This happens because the partial obstruction of the mild stenosis generates a symmetry in the flow that does not exist for the healthy condition. For the severe stenosis, there is more irregular motion and more particle trapping as expected.

1.
World Health Organization
, “WHO—The top 10 causes of death” (2018).
2.
D.
Liepsch
,
A.
Balasso
,
H.
Berger
, and
H. H.
Eckstein
, “
How local hemodynamics at the carotid bifurcation influence the development of carotid plaques
,”
Perspect. Med.
1-12
,
132
136
(
2012
).
3.
D. N.
Ku
,
D. P.
Giddens
,
C. K.
Zarins
, and
S.
Glagov
, “Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress,”
Arteriosclerosis
5
,
293
302
(
1985
).
4.
M.
Motomiya
and
T.
Karino
, “Flow patterns in the human carotid artery bifurcation,”
Stroke
15
,
50
56
(
1984
).
5.
J.
Vétel
,
A.
Garon
, and
D.
Pelletier
, “
Lagrangian coherent structures in the human carotid artery bifurcation
,”
Exp. Fluids
46
,
1067
1079
(
2009
).
6.
R.
Botnar
,
G.
Rappitsch
,
M. B.
Scheidegger
,
D.
Liepsch
,
K.
Perktold
, and
P.
Boesiger
, “Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements,”
J Biomech.
33
,
137
144
(
2000
).
7.
H.
Aref
, “
Stirring by chaotic advection
,”
J. Fluid Mech.
143
,
1
21
(
1984
).
8.
T.
Frommelt
,
M.
Kostur
,
M.
Wenzel-Schäfer
,
P.
Talkner
,
P.
Hänggi
, and
A.
Wixforth
, “
Microfluidic mixing via acoustically driven chaotic advection
,”
Phys. Rev. Lett.
100
,
1
4
(
2008
).
9.
G.
Karolyi
,
A.
Pentek
,
I.
Scheuring
,
T.
Tel
, and
Z.
Toroczkai
, “
Chaotic flow: The physics of species coexistence
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
13661
13665
(
2000
).
10.
K. V.
Koshel’
and
S. V.
Prants
, “
Chaotic advection in the ocean
,”
Phys. Usp.
49
,
1151
1178
(
2006
).
11.
G.
Károlyi
and
C.
Grebogi
, “Chaotic advection and fractality: Applications in oceanography,” in
OCEANS 2007—Europe
(
Aberdeen
,
2007
), pp.
1
5
.
12.
Y.
Lou
and
F.
Lutscher
, “
Evolution of dispersal in open advective environments
,”
J. Math. Biol.
69
,
1319
1342
(
2013
).
13.
T.
Tel
,
G.
Karolyi
,
A.
Pentek
,
I.
Scheuring
,
Z.
Toroczkai
,
C.
Grebogi
, and
J.
Kadtke
, “
Chaotic advection, diffusion, and reactions in open flows
,”
Chaos
10
,
89
98
(
2000
).
14.
J.
Ottino
, “
Mixing, chaotic advection, and turbulence
,”
Annu. Rev. Fluid Mech.
22
,
207
253
(
1990
).
15.
T.
Tél
,
A.
de Moura
,
C.
Grebogi
, and
G.
Károlyi
, “
Chemical and biological activity in open flows: A dynamical system approach
,”
Phys. Rep.
413
,
91
196
(
2005
).
16.
A. B.
Schelin
,
G.
Károlyi
,
A. P.
De Moura
,
N. A.
Booth
, and
C.
Grebogi
, “
Chaotic advection in blood flow
,”
Phys. Rev. E
80
,
1
7
(
2009
).
17.
A. B.
Schelin
,
G.
Károlyi
,
A. P.
De Moura
,
N. A.
Booth
, and
C.
Grebogi
, “
Fractal structures in stenoses and aneurysms in blood vessels
,”
Philos. Trans. R. Soc. A
368
,
5605
5617
(
2010
).
18.
A. B.
Schelin
,
G.
Károlyi
,
A. P.
De Moura
,
N.
Booth
, and
C.
Grebogi
, “
Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow?
,”
Comput. Biol. Med.
42
,
276
281
(
2012
).
19.
G.
Závodszky
,
G.
Károlyi
, and
G.
Paál
, “
Emerging fractal patterns in a real 3D cerebral aneurysm
,”
J. Theor. Biol.
368
,
95
101
(
2015
).
20.
S. C.
Shadden
, “Lagrangian coherent structures,” in
Transport and Mixing in Laminar Flows
,
edited by R. Grigoriev
(
Wiley
,
2011
).
21.
S. C.
Shadden
and
A.
Arzani
, “
Lagrangian postprocessing of computational hemodynamics
,”
Ann. Biomed. Eng.
43
,
41
58
(
2015
).
22.
A.
Arzani
,
S. C.
Shadden
,
A. M.
Gambaruto
, and
G.
Chen
, “
Wall shear stress exposure time: A Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows
,”
Biomech. Model. Mechanobiol.
16
,
787
803
(
2016
).
23.
J.
Toger
,
M.
Kanski
,
M.
Carlsson
,
S.
Kovacs
,
G.
Soderlind
,
H.
Arheden
, and
E.
Heiberg
, “
Vortex ring formation in the left ventricle of the heart: Analysis by 4D flow MRI and lagrangian coherent structures
,”
Ann. Biomed. Eng.
40
,
2652
2662
(
2012
).
24.
S. C.
Shadden
and
C. A.
Taylor
, “
Characterization of coherent structures in the cardiovascular system
,”
Ann. Biomed. Eng.
36
,
1152
1162
(
2008
).
25.
N. W.
Bressloff
, “
Parametric geometry exploration of the human carotid artery bifurcation
,”
J. Biomech.
40
,
2483
2491
(
2007
).
26.
B.
Bharadvaj
,
R.
Mabon
, and
D.
Giddens
, “
Steady flow in a model of the human carotid bifurcation. Part II–laser-doppler anemometer measurements
,”
J. Biomech.
15
,
363
378
(
1982
).
27.
R. F.
Smith
,
B. K.
Rutt
,
A. J.
Fox
, and
R. N.
Rankin
, “
Geometric characterization of stenosed human carotid arteries
,”
Acad. Radiol.
3
,
898
911
(
1996
).
28.
COMSOL Multiphysicstextregistered v. 5.0.
29.
H.
Kantz
and
P.
Grassberger
, “
Repellers, semi-attractors, and long-lived chaotic transients
,”
Physica D
17
,
75
86
(
1985
).
30.
T.
Tél
,
M.
Gruiz
,
K.
Kulacsy
, and
S.
Hadobas
, Chaotic Dynamics: An Introduction Based on Classical Mechanics (Cambridge University Press, 2006).
31.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
, Chaos: An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences (Springer, New York, 2000).
32.
A.
Daza
,
A.
Wagemakers
,
B.
Georgeot
,
D.
Guéry-Odelin
, and
M. A. F.
Sanjuán
, “
Basin entropy: A new tool to analyze uncertainty in dynamical systems
,”
Sci. Rep.
6
,
31416
(
2016
).
33.
A.
Gusso
,
R. L.
Viana
,
A. C.
Mathias
, and
I. L.
Caldas
, “
Nonlinear dynamics and chaos in micro/nanoelectromechanical beam resonators actuated by two-sided electrodes
,”
Chaos Solitons Fractals
122
,
6
16
(
2019
).
34.
A. C.
Mathias
,
R. L.
Viana
,
T.
Kroetz
, and
I. L.
Caldas
, “
Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves
,”
Physica A
469
,
681
694
(
2017
).
35.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
, “
How basin stability complements the linear-stability paradigm
,”
Nat. Phys.
9
,
89
92
(
2013
).
36.
J. P.
Archie
,
G. L.
Moneta
,
J. M.
Edwards
,
R. W.
Chitwood
,
L. M.
Taylor
,
R. W.
Lee
, and
C. A.
Cummings
, “
Correlation of north american symptomatic carotid endarterectomy trial (NASCET) angiographic definition of 70% to 99% internal carotid artery stenosis with duplex scanning
,”
J. Vasc. Surg.
17
,
152
159
(
1993
).

Supplementary Material

You do not currently have access to this content.