Inspired by the Deffuant and Hegselmann–Krause models of opinion dynamics, we extend the Kuramoto model to account for confidence bounds, i.e., vanishing interactions between pairs of oscillators when their phases differ by more than a certain value. We focus on Kuramoto oscillators with peaked, bimodal distribution of natural frequencies. We show that, in this case, the fixed-points for the extended model are made of certain numbers of independent clusters of oscillators, depending on the length of the confidence bound—the interaction range—and the distance between the two peaks of the bimodal distribution of natural frequencies. This allows us to construct the phase diagram of attractive fixed-points for the bimodal Kuramoto model with bounded confidence and to analytically explain clusterization in dynamical systems with bounded confidence.

1.
Y.
Kuramoto
,
Prog. Theor. Phys. Suppl.
79
,
223
(
1984
).
2.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
3.
E.
Montbrio
,
J.
Kurths
, and
B.
Blasius
,
Phys. Rev. E
70
,
056125
(
2004
).
4.
F.
De Smet
and
D.
Aeyels
,
Phys. Rev. E
77
,
066212
(
2008
).
5.
E.
Martens
,
E.
Barreto
,
S.
Strogatz
,
E.
Ott
,
P.
So
, and
T.
Antonsen
,
Phys. Rev. E
79
,
026204
(
2009
).
6.
A.
Jadbabaie
,
N.
Motee
, and
M.
Barahona
, in Proceedings of the 2004 IEEE ACC (IEEE, 2004), p. 4296.
7.
A. J.
Korsak
,
IEEE Trans. Power App. Syst.
PAS-91
,
1093
(
1972
).
8.
J.
Baillieul
and
C. I.
Byrnes
,
IEEE Trans. Circuits Syst.
29
,
724
(
1982
).
9.
N.
Janssens
and
A.
Kamagate
,
Int. J. Elect. Power Energy Syst.
25
,
591
(
2003
).
10.
J. A.
Rogge
and
D.
Aeyels
,
J. Phys. A
37
,
11135
(
2004
).
11.
J.
Ochab
and
P. F.
Góra
,
Acta Phys. Pol. B
3
,
453
(
2010
).
12.
H. D.
Nguyen
and
K. S.
Turitsyn
, in IEEE PES General Meeting—Conference Exposition (IEEE, 2014).
13.
D.
Mehta
,
N. S.
Daleo
,
F.
Dörfler
, and
J. D.
Hauenstein
,
Chaos
25
,
053103
(
2015
).
14.
R.
Delabays
,
T.
Coletta
, and
P.
Jacquod
,
J. Math. Phys.
57
,
032701
(
2016
).
15.
D.
Manik
,
M.
Timme
, and
D.
Witthaut
,
Chaos
27
,
083123
(
2017
).
16.
R.
Delabays
,
T.
Coletta
, and
P.
Jacquod
,
J. Math. Phys.
58
,
032703
(
2017
).
17.
R.
Delabays
,
P.
Jacquod
, and
F.
Dörfler
,
SIAM J. Appl. Dyn. Syst.
18
,
458
(
2019
).
18.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
,
Chaos
16
,
015103
(
2006
).
19.
R.
Delabays
,
M.
Tyloo
, and
P.
Jacquod
,
Chaos
27
,
103109
(
2017
).
20.
A.
Pluchino
,
V.
Latora
, and
A.
Rapisarda
,
Eur. Phys. J. B
50
,
169
(
2006
).
21.
G.
Deffuant
,
D.
Neau
,
F.
Amblard
, and
G.
Weisbuch
,
Adv. Complex Syst.
3
,
87
(
2000
).
22.
R.
Hegselmann
and
U.
Krause
,
J. Artif. Soc. Simulat.
5
(
2002
).
23.
J.
Lorenz
,
Int. J. Mod. Phys. C
18
,
1819
(
2007
).
24.
The literature sometimes refer to this phenomenon as fragmentation or polarization.
26.
J.
Zhang
and
G.
Chen
,
J. Syst. Sci. Complex
28
,
773
(
2015
).
27.
A.
Mirtabatabaei
and
F.
Bullo
,
SIAM J. Control Optim.
50
,
2763
(
2012
).
28.
B.
Chazelle
and
C.
Wang
,
IEEE Trans. Autom. Control
62
,
3905
(
2017
).
29.
G.
Chen
,
W.
Su
,
W.
Mei
, and
F.
Bullo
,
Automatica
114
,
108825
(
2020
).
31.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
New York
,
1986
).
32.
P.
Bullen
, in Handbook of Means and Their Inequalities, Mathematics and Its Applications (Springer, Dordrecht, 2003).
You do not currently have access to this content.