In this work, we study numerically the periodicity of regular regions embedded in chaotic states for the case of an anisotropic magnetic particle. The particle is in the monodomain regime and subject to an applied magnetic field that depends on time. The dissipative Landau–Lifshitz–Gilbert equation models the particle. To perform the characterization, we compute several two-dimensional phase diagrams in the parameter space for the Lyapunov exponents and the isospikes. We observe multiple transitions among periodic states, revealing complex topological structures in the parameter space typical of dynamic systems. To show the finer details of the regular structures, iterative zooms are performed. In particular, we find islands of synchronization for the magnetization and the driven field and several shrimp structures with different periods.

1.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
UK
,
2003
).
2.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
2010
).
3.
S.
Boccaletti
,
C.
Grebogi
,
Y. C.
Lai
,
H.
Mancini
, and
D.
Maza
, “
The control of chaos: Theory and applications
,”
Phys. Rep.
329
,
103
197
(
2000
).
4.
Chaos Detection and Predictability, edited by C. H. Skokos, G. A. Gottwald, and J. Laskar (Springer, 2016).
5.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
(
1985
).
6.
J. A.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
7.
J. A. C.
Gallas
, “
The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows
,”
Int. J. Bifurc. Chaos
20
,
197
(
2010
).
8.
Y.
Zou
,
M.
Thiel
,
M. C.
Romano
, and
J.
Kurths
, “
Shrimp structure and associated dynamics in parametrically excited oscillators
,”
Int. J. Bifurc. Chaos
16
,
3567
3579
(
2006
).
9.
H. R.
Dullin
,
S.
Schmidt
,
P. H.
Richter
, and
S. K.
Grossmann
, “
Extended phase diagram of the Lorenz model
,”
Int. J. Bifurc. Chaos
17
,
3013
3033
(
2007
).
10.
R.
Barrio
,
F.
Blesa
, and
S.
Serrano
, “
Topological changes in periodicity hubs of dissipative systems
,”
Phys. Rev. Lett.
108
,
214102
(
2012
).
11.
W.
Façanha
,
B.
Oldeman
, and
L.
Glass
, “
Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps
,”
Phys. Lett. A
377
,
1264
1268
(
2013
).
12.
T.
Xing
,
R.
Barrio
, and
A.
Shilnikov
, “
Symbolic quest into homoclinic chaos
,”
Int. J. Bifurc. Chaos
24
,
1440004
(
2014
).
13.
R.
Barrio
,
M.
Á. Martínez
,
S.
Serrano
, and
D.
Wilczak
, “
When chaos meets hyperchaos: 4D Rössler model
,”
Phys. Lett. A.
379
,
2300
2305
(
2015
).
14.
L. M.
Pérez
,
J.
Bragard
,
H. L.
Mancini
,
J. A. C.
Gallas
,
A. M.
Cabanas
,
O. J.
Suarez
, and
D.
Laroze
, “
Anisotropy effects on magnetization dynamics
,”
Net. Het. Med.
10
,
209
(
2015
).
15.
M. A.
Nascimento
,
J. A.
Gallas
, and
H.
Varela
, “
Self-organized distribution of periodicity and chaos in an electrochemical oscillator
,”
Phys. Chem. Chem. Phys.
13
,
349
784
(
2011
).
16.
J. G.
Freire
and
J. A. C.
Gallas
, “
Stern–Brocot trees in the periodicity of mixed-mode oscillations
,”
Phys. Chem. Chem. Phys.
13
,
12191
(
2011
).
17.
A.
Sack
,
J. G.
Freire
,
E.
Lindberg
,
T.
Pöschel
, and
J. A. C.
Gallas
, “
Discontinuous spirals of stable periodic oscillations
,”
Sci. Rep.
3
,
3350
(
2013
).
18.
M. R.
Gallas
,
M. R.
Gallas
, and
J. A. C.
Gallas
, “
Distribution of chaos and periodic spikes in a three-cell population model of cancer
,”
Eur. Phys. J. Spec. Top.
223
,
2131
2144
(
2014
).
19.
J.
Park
,
H.
Lee
,
Y.
Jeon
, and
J.
Baik
, “
Periodicity of the Lorenz–Stenflo equations
,”
Phys. Scr.
90
,
065201
(
2015
).
20.
J.
Park
,
H.
Lee
, and
J.
Baik
, “
Periodic and chaotic dynamics of the Ehrhard–Müller system
,”
Int. J. Bifurc. Chaos
26
,
1630015
(
2016
).
21.
J. A. C.
Gallas
, “
Spiking systematics in some CO2 laser models
,”
Adv. At. Mol. Opt. Phys.
65
,
127
191
(
2016
).
22.
S.
Moon
,
B.
Han
,
J.
Park
,
J. M.
Seo
, and
J.
Baik
, “
Periodicity and chaos of high-order Lorenz systems
,”
Int. J. Bifurc. Chaos
27
,
1750176
(
2017
).
23.
V.
Wiggers
and
P. C.
Rech
, “
Multistability and organization of periodicity in a Van der Pol–Duffing oscillator
,”
Chaos Soliton. Fract.
103
,
632
637
(
2017
).
24.
V.
Wiggers
and
P. C.
Rech
, “
Chaos, periodicity, and quasiperiodicity in a radio-physical oscillator
,”
Int. J. Bifurcation Chaos
27
,
1730023
(
2017
).
25.
P. C.
Rech
, “
Organization of the periodicity in the parameter-space of a glycolysis discrete-time mathematical model
,”
J. Math. Chem.
57
,
632
637
(
2019
).
26.
P. C.
Rech
,
S.
Dhua
, and
N. C.
Pati
, “
Multistability and bubbling route to chaos in a deterministic model for geomagnetic field reversals
,”
Int. J. Bifurc. Chaos
29
,
1930034
(
2019
).
27.
J. A.
Gallas
, “
Stability diagrams for a memristor oscillator
,”
Eur. Phys. J. Spec. Top.
228
,
2081
(
2019
), and reference therein.
28.
G.
Ramírez
,
I. M.
Jánosi
, and
J. A.
Gallas
, “
Two-parameter areal scaling in the Hénon map
,”
Europhys. Lett.
126
,
20001
(
2019
).
29.
J. G.
Freire
,
A.
Caldeórn
,
H.
Varela
, and
J. A.
Gallas
, “
Phase diagrams and dynamical evolution of the triple-pathway electro-oxidation of formic acid on platinum
,”
Phys. Chem. Chem. Phys.
22
,
1078
1091
(
2020
).
30.
M. N.
Mahmud
,
Z.
Siri
,
J. A.
Vélez
,
L. M.
Pérez
, and
D.
Laroze
, “
Chaotic convection in an Oldroyd viscoelastic fluid in saturated porous medium with feedback control
,”
Chaos
30
,
073109
(
2020
).
31.
Nonlinear Phenomena and Chaos in Magnetic Materials, edited by P. E. Wigen (World Scientific, Singapore, 1994).
32.
G.
Bertotti
,
I.
Mayergoyz
, and
C.
Serpico
,
Nonlinear Magnetization Dynamics in Nanosystems
(
Elsevier
,
Amsterdam
,
2009
).
33.
M.
Lakshmanan
, “
The fascinating world of the Landau–Lifshitz–Gilbert equation: An overview
,”
Phil. Trans. R. Soc. A
369
,
1280
1300
(
2011
).
34.
L. F.
Alvarez
,
O.
Pla
, and
O.
Chubykalo
, “
Quasiperiodicity, bistability and chaos in the Landau–Lifshitz equation
,”
Phys. Rev. B
61
,
11613
(
2000
).
35.
G.
Bertotti
,
C.
Serpico
, and
I. D.
Mayergoyz
, “
Nonlinear magnetization dynamics under circularly polarized field
,”
Phys. Rev. Lett.
86
,
724
(
2001
).
36.
P.-B.
He
and
W. M.
Liu
, “
Nonlinear magnetization dynamics in a ferromagnetic nanowire with spin current
,”
Phys. Rev. B
72
,
064410
(
2005
).
37.
D.
Laroze
and
P.
Vargas
, “
Dynamical behavior of two interacting magnetic nanoparticles
,”
Physica B
372
,
332
(
2006
).
38.
D. I.
Sementsov
and
A. M.
Shutyi
, “
Nonlinear regular and stochastic dynamics of magnetization in thin-film structures
,”
Phys. Usp.
50
,
793
(
2007
).
39.
D.
Laroze
,
P.
Vargas
,
C.
Cortes
, and
G.
Gutierrez
, “
Dynamics of two interacting dipoles
,”
J. Magn. Magn. Mater.
320
,
1440
(
2008
).
40.
D.
Laroze
and
L. M.
Perez
, “
Classical spin dynamics of four interacting magnetic particles on a ring
,”
Physica B
403
,
473
(
2008
).
41.
P. P.
Horley
,
V. R.
Vieira
,
P. M.
Gorley
,
V. K.
Dugaev
, and
J.
Barnas
, “
Influence of a periodic magnetic field and spin-polarized current on the magnetic dynamics of a monodomain ferromagnet
,”
Phys. Rev. B
77
,
054427
(
2008
).
42.
D. V.
Vagin
and
P.
Polyakov
, “
Control of chaotic and deterministic magnetization dynamics regimes by means of sample shape varying
,”
J. Appl. Phys.
105
,
033914
(
2009
).
43.
A. M.
Shutyi
and
D. I.
Sementsov
, “
Chaotic magnetization dynamics in single-crystal thin-film structures
,”
Crystallogr. Rep.
54
,
98
(
2009
).
44.
A. M.
Shutyĭ
and
D. I.
Sementsov
, “
Regular and chaotic dynamics of magnetization precession in ferrite–garnet films
,”
Chaos
19
,
013110
(
2009
).
45.
R. K.
Smith
,
M.
Grabowski
, and
R. E.
Camley
, “
Period doubling toward chaos in a driven magnetic macrospin
,”
J. Magn. Magn. Mater.
322
,
2127
(
2010
).
46.
Y.
Khivintsev
,
B.
Kuanr
,
T. J.
Fal
,
M.
Haftel
,
R. E.
Camley
,
Z.
Celinski
, and
D. L.
Mills
, “
Nonlinear ferromagnetic resonance in permalloy films: A nonmonotonic power-dependent frequency shift
,”
Phys. Rev. B
81
,
054436
(
2010
).
47.
Y.
Khivintsev
,
J.
Marsh
,
V.
Zagorodnii
,
I.
Harward
,
J.
Lovejoy
,
P.
Krivosik
,
R. E.
Camley
, and
Z.
Celinski
, “
Nonlinear amplification and mixing of spin waves in a microstrip geometry with metallic ferromagnets
,”
Appl. Phys. Lett.
98
,
042505
(
2011
).
48.
D.
Laroze
,
D.
Becerra-Alonso
,
J. A. C.
Gallas
, and
H.
Pleiner
, “
Magnetization dynamics under a quasiperiodic magnetic field
,”
IEEE Trans. Magn.
48
,
3567
(
2012
).
49.
D.
Urzagasti
,
D.
Becerra-Alonso
,
L. M.
Pérez
,
H. L.
Mancini
, and
D.
Laroze
, “
Hyper-chaotic magnetisation dynamics of two interacting dipoles
,”
J. Low Temp. Phys.
181
,
211
(
2015
).
50.
M. G.
Phelps
,
K. L.
Livesey
,
A. M.
Ferona
, and
R. E.
Camley
, “
Tunable transient decay times in nonlinear systems: Application to magnetic precession
,”
Europhys. Lett.
109
,
37007
(
2015
).
51.
S. I.
Denisov
,
T. V.
Lyutyy
,
B. O.
Pedchenko
, and
O. M.
Hryshko
, “
Induced magnetization and power loss for a periodically driven system of ferromagnetic nanoparticles with randomly oriented easy axes
,”
Phys. Rev. B
94
,
024406
(
2016
).
52.
P.
Horley
,
M.
Kushnir
,
M.
Morales-Meza
,
A.
Sukhov
, and
V.
Rusyn
, “
Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current
,”
Physica B
486
,
60
(
2016
).
53.
A.
Pivano
and
V. O.
Dolocan
, “
Chaotic dynamics of magnetic domain walls in nanowires
,”
Phys. Rev. B
93
,
144410
(
2016
).
54.
A. M.
Ferona
and
R. E.
Camley
, “
Nonlinear and chaotic magnetization dynamics near bifurcations of the Landau–Lifshitz–Gilbert equation
,”
Phys. Rev. B
95
,
104421
(
2017
).
55.
G.
Okano
and
Y.
Nozaki
, “
Evaluation of the effective potential barrier height in nonlinear magnetization dynamics excited by ac magnetic field
,”
Phys. Rev. B
97
,
014435
(
2018
).
56.
A. M.
Cabanas
,
L. M.
Pérez
, and
D.
Laroze
, “
Strange non-chaotic attractors in spin valve systems
,”
J. Magn. Magn. Mater.
460
,
320
326
(
2018
).
57.
A. M.
Ferona
and
R. E.
Camley
, “
Nonlinear power-dependent effects in exchange-coupled magnetic bilayers
,”
Phys. Rev. B
99
,
064405
(
2019
).
58.
J.
Williame
,
A. D.
Accioly
,
D.
Rontani
,
M.
Sciamanna
, and
J.
Kim
, “
Chaotic dynamics in a macrospin spin-torque nano-oscillator with delayed feedback
,”
Appl. Phys. Lett.
114
,
232405
(
2019
).
59.
T.
Devolder
,
D.
Rontani
,
S.
Petit-Watelot
,
K.
Bouzehouane
,
S.
Andrieu
,
J.
Letang
,
M.
Yoo
,
J.
Adam
,
C.
Chappert
,
S.
Girod
,
V.
Cros
,
M.
Sciamanna
, and
J.
Kim
, “
Chaos in magnetic nanocontact vortex oscillators
,”
Phys. Rev. Lett.
123
,
147701
(
2019
).
60.
C.
Gibson
,
S.
Bildstein
,
J. A.
Lee
, and
M.
Grabowski
, “
Nonlinear resonances and transitions to chaotic dynamics of a driven magnetic moment
,”
J. Magn. Magn. Mater.
501
,
166352
(
2020
).
61.
E.
Montoya
,
S.
Perna
,
Y.
Chen
,
J. A.
Katine
,
M.
d’Aquino
,
C.
Serpico
, and
I. N.
Krivorotov
, “
Magnetization reversal driven by low dimensional chaos in a nanoscale ferromagnet
,”
Nat. Commun.
10
,
543
(
2019
).
62.
D.
Laroze
,
J.
Bragard
,
O. J.
Suarez
, and
H.
Pleiner
, “
Characterization of the chaotic magnetic particle dynamics
,”
IEEE Trans. Magn.
47
,
3032
(
2011
).
63.
J.
Bragard
,
H.
Pleiner
,
O. J.
Suarez
,
P.
Vargas
,
J. A. C.
Gallas
, and
D.
Laroze
, “
Chaotic dynamics of a magnetic nanoparticle
,”
Phys. Rev. E
84
,
037202
(
2011
).
64.
X.
Batlle
and
A.
Labarta
, “
Finite-size effects in fine particles: Magnetic and transport properties
,”
J. Phys. D
35
,
R15
R42
(
2002
).
65.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
, 2nd ed. (
John Wiley
,
2009
).
66.
S.
Boccaletti
,
D. L.
Valladares
,
J.
Kurths
,
D.
Maza
, and
H.
Mancini
, “
Synchronization of chaotic structurally nonequivalent systems
,”
Phys. Rev. E
61
,
3712
(
2000
).
67.
J.
Bragard
,
G.
Vidal
, and
H.
Mancini
, “
Chaos suppression through asymmetric coupling
,”
Chaos
17
,
043107
(
2007
).
68.
D.
Laroze
,
P. G.
Siddheshwar
, and
H.
Pleiner
, “
Chaotic convection in a ferrofluid
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
2436
(
2013
).
69.
D.
Laroze
and
H.
Pleiner
, “
Thermal convection in a nonlinear non-Newtonian magnetic fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
26
,
167
(
2015
).
70.
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents: A Tool to Explore Complex Dynamics
(
Cambridge University Press
,
2016
).
71.
S.
Moon
,
B.
Han
,
J.
Park
,
J.
Seo
, and
J.
Baik
, “
A physically extended Lorenz system
,”
Chaos
29
,
063129
(
2019
).

Supplementary Material

You do not currently have access to this content.