In this work, we study numerically the periodicity of regular regions embedded in chaotic states for the case of an anisotropic magnetic particle. The particle is in the monodomain regime and subject to an applied magnetic field that depends on time. The dissipative Landau–Lifshitz–Gilbert equation models the particle. To perform the characterization, we compute several two-dimensional phase diagrams in the parameter space for the Lyapunov exponents and the isospikes. We observe multiple transitions among periodic states, revealing complex topological structures in the parameter space typical of dynamic systems. To show the finer details of the regular structures, iterative zooms are performed. In particular, we find islands of synchronization for the magnetization and the driven field and several shrimp structures with different periods.
Skip Nav Destination
Article navigation
September 2020
Research Article|
September 01 2020
Periodicity characterization of the nonlinear magnetization dynamics
Special Collection:
Instabilities and Nonequilibrium Structures
J. A. Vélez
;
J. A. Vélez
1
Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá
, Casilla 7D, Arica, Chile
Search for other works by this author on:
J. Bragard
;
J. Bragard
2
Departamento de Física y Matemáticas Aplicadas, Universidad de Navarra
, Pamplona 31080, Spain
Search for other works by this author on:
L. M. Pérez
;
L. M. Pérez
a)
1
Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá
, Casilla 7D, Arica, Chile
a)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
A. M. Cabanas
;
A. M. Cabanas
1
Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá
, Casilla 7D, Arica, Chile
Search for other works by this author on:
O. J. Suarez
;
O. J. Suarez
3
Departamento de Física, Universidad de Sucre
, A.A. 406 Sincelejo, Colombia
Search for other works by this author on:
D. Laroze
;
D. Laroze
1
Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá
, Casilla 7D, Arica, Chile
Search for other works by this author on:
H. L. Mancini
H. L. Mancini
b)
2
Departamento de Física y Matemáticas Aplicadas, Universidad de Navarra
, Pamplona 31080, Spain
Search for other works by this author on:
a)Author to whom correspondence should be addressed: [email protected]
Note: This article is part of the Focus Issue, Instabilities and Nonequilibrium Structures.
Chaos 30, 093112 (2020)
Article history
Received:
February 26 2020
Accepted:
August 11 2020
Citation
J. A. Vélez, J. Bragard, L. M. Pérez, A. M. Cabanas, O. J. Suarez, D. Laroze, H. L. Mancini; Periodicity characterization of the nonlinear magnetization dynamics. Chaos 1 September 2020; 30 (9): 093112. https://doi.org/10.1063/5.0006018
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Response to music on the nonlinear dynamics of human fetal heart rate fluctuations: A recurrence plot analysis
José Javier Reyes-Lagos, Hugo Mendieta-Zerón, et al.
Rate-induced biosphere collapse in the Daisyworld model
Constantin W. Arnscheidt, Hassan Alkhayuon
Selecting embedding delays: An overview of embedding techniques and a new method using persistent homology
Eugene Tan, Shannon Algar, et al.
Related Content
Stern–Brocot arithmetic in dynamics of a biochemical reaction model
Chaos (December 2024)
Dynamical analysis of a periodically forced chaotic chemical oscillator
Chaos (July 2024)
Complex dynamics in an unexplored simple model of the peroxidase–oxidase reaction
Chaos (February 2023)
Chaotic convection in an Oldroyd viscoelastic fluid in saturated porous medium with feedback control
Chaos (July 2020)
Bifurcations, chaos, and multistability in a nonautonomous predator–prey model with fear
Chaos (December 2021)