Recurrence analysis is a powerful tool to appraise the nonlinear dynamics of complex systems and delineate the inherent laminar, divergent, or transient behaviors. Oftentimes, the effectiveness of recurrence quantification hinges upon the accurate reconstruction of the state space from a univariate time series with a uniform sampling rate. Few, if any, existing approaches quantify the recurrence properties from a short-term time series, particularly those sampled at a non-uniform rate, which are fairly ubiquitous in studies of rare or extreme events. This paper presents a novel intrinsic recurrence quantification analysis to portray the recurrence behaviors in complex dynamical systems with only short-term observations. As opposed to the traditional recurrence analysis, the proposed approach represents recurrence dynamics of a short-term time series in an intrinsic state space formed by proper rotations, attained from intrinsic time-scale decomposition (ITD) of the short time series. It is shown that intrinsic recurrence quantification analysis (iRQA), patterns harnessed from the corresponding recurrence plot, captures the underlying nonlinear and nonstationary dynamics of those short time series. In addition, as ITD does not require uniform sampling of the time series, iRQA is also applicable to unevenly spaced temporal data. Our findings are corroborated in two case studies: change detection in the Lorenz time series and early-stage identification of atrial fibrillation using short-term electrocardiogram signals.

1.
C.
Cheng
,
A.
Sa-Ngasoongsong
,
O.
Beyca
,
T.
Le
,
H.
Yang
,
Z.
Kong
, and
S.
Bukkapatnam
, “
Time series forecasting for nonlinear and non-stationary processes: A review and comparative study
,”
IIE Trans.
47
(
10
),
1053
1071
(
2015
).
2.
S.
Bukkapatnam
and
C.
Cheng
, “
Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models
,”
Phys. Rev. E
82
(
5
),
056206
(
2010
).
3.
C.
Cheng
, “
Multi-scale Gaussian process experts for dynamic evolution prediction of complex systems
,”
Expert Syst. Appl.
99
,
25
31
(
2018
).
4.
G. D.
Clifford
,
C.
Liu
,
B.
Moody
,
H. L.
Li-wei
,
I.
Silva
,
Q.
Li
,
A.
Johnson
, and
R. G.
Mark
, “AF classification from a short single lead ECG recording: The PhysioNet/Computing in Cardiology Challenge 2017,” in 2017 Computing in Cardiology (CinC) (IEEE, 2017), pp. 1–4. https://physionet.org/content/challenge-2017/1.0.0/.
5.
F.
Basiri
,
J.
Casadiego
,
M.
Timme
, and
D.
Witthaut
, “
Inferring power-grid topology in the face of uncertainties
,”
Phys. Rev. E
98
(
1
),
012305
(
2018
).
6.
H.
Yang
,
S.
Bukkapatnam
, and
R.
Komanduri
, “
Nonlinear adaptive wavelet analysis of electrocardiogram signals
,”
Phys. Rev. E
76
(
2
),
026214
(
2007
).
7.
C.
Cheng
,
C.
Kan
, and
H.
Yang
, “
Heterogeneous recurrence analysis of heartbeat dynamics for the identification of sleep apnea events
,”
Comput. Biol. Med.
75
,
10
18
(
2016
).
8.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
2004
), Vol. 7.
9.
M.
Frei
and
I.
Osorio
, “
Intrinsic time-scale decomposition: Time–frequency–energy analysis and real-time filtering of non-stationary signals
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
463
(
2078
),
321
342
(
2006
).
10.
M. B.
Kennel
,
R.
Brown
, and
H. D.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
(
6
),
3403
(
1992
).
11.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
(
2
),
1134
(
1986
).
12.
N.
Marwan
,
C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5–6
),
237
329
(
2007
).
13.
F.
Imani
,
C.
Cheng
,
R.
Chen
, and
H.
Yang
, “
Nested Gaussian process modeling and imputation of high-dimensional incomplete data under uncertainty
,”
IISE Trans. Healthc. Syst. Eng.
9
,
315
326
(
2019
).
14.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
(
9
),
712
(
1980
).
15.
J.
Lekscha
and
R. V.
Donner
, “
Phase space reconstruction for non-uniformly sampled noisy time series
,”
Chaos
28
(
8
),
085702
(
2018
).
16.
E. R.
Deyle
and
G.
Sugihara
, “
Generalized theorems for nonlinear state space reconstruction
,”
PLoS ONE
6
(
3
),
e18295
(
2011
).
17.
M.
Casdagli
,
S.
Eubank
,
J. D.
Farmer
, and
J.
Gibson
, “
State space reconstruction in the presence of noise
,”
Physica D
51
(
1–3
),
52
98
(
1991
).
18.
I.
Ozken
,
D.
Eroglu
,
S. F.
Breitenbach
,
N.
Marwan
,
L.
Tan
,
U.
Tirnakli
, and
J.
Kurths
, “
Recurrence plot analysis of irregularly sampled data
,”
Phys. Rev. E
98
(
5
),
052215
(
2018
).
19.
B.
Goswami
,
N.
Boers
,
A.
Rheinwalt
,
N.
Marwan
,
J.
Heitzig
,
S. F.
Breitenbach
, and
J.
Kurths
, “
Abrupt transitions in time series with uncertainties
,”
Nat. Commun.
9
(
1
),
1
10
(
2018
).
20.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. C.
Wu
,
H. H.
Shih
,
Q.
Zheng
,
N.-C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
, “
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
454
(
1971
),
903
995
(
1998
).
21.
X.
Wu
,
Y.
Zheng
,
Y.
Che
, and
C.
Cheng
, “
Pattern recognition and automatic identification of early-stage atrial fibrillation
,”
Expert Syst. Appl.
158
,
113560
(
2020
).
22.
R.
Sun
and
Y.
Wang
, “
Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot
,”
Med. Eng. Phys.
30
(
9
),
1105
1111
(
2008
).
23.
N.
Navoret
,
S.
Jacquir
,
G.
Laurent
, and
S.
Binczak
, “
Detection of complex fractionated atrial electrograms using recurrence quantification analysis
,”
IEEE Trans. Biomed. Eng.
60
(
7
),
1975
1982
(
2013
).
24.
N.
Marwan
,
N.
Wessel
,
U.
Meyerfeldt
,
A.
Schirdewan
, and
J.
Kurths
, “
Recurrence-plot-based measures of complexity and their application to heart-rate-variability data
,”
Phys. Rev. E
66
(
2
),
026702
(
2002
).
25.
D. J.
Berndt
and
J.
Clifford
, “Using dynamic time warping to find patterns in time series,” in KDD Workshop (AAAI, Seattle, WA, 1994), Vol. 10, pp. 359–370.
26.
C.
Cassisi
,
P.
Montalto
,
M.
Aliotta
,
A.
Cannata
,
A.
Pulvirenti
et al., “Similarity measures and dimensionality reduction techniques for time series data mining,” in Advances in Data Mining Knowledge Discovery and Applications (IntechOpen, 2012), pp. 71–96.
27.
C.
Kan
,
C.
Cheng
, and
H.
Yang
, “
Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes
,”
J. Manuf. Syst.
41
,
178
187
(
2016
).
28.
H.
Yang
and
Y.
Chen
, “
Heterogeneous recurrence monitoring and control of nonlinear stochastic processes
,”
Chaos
24
(
1
),
013138
(
2014
).
29.
A.
Shamsan
and
C.
Cheng
, “
Intrinsic multiplex graph model detects incipient process drift in ultraprecision manufacturing
,”
J. Manuf. Syst.
50
,
81
86
(
2019
).
30.
C. A.
Lowry
,
W. H.
Woodall
,
C. W.
Champ
, and
S. E.
Rigdon
, “
A multivariate exponentially weighted moving average control chart
,”
Technometrics
34
(
1
),
46
53
(
1992
).
31.
M.
Bohnen
,
J. B.
Shea
,
G. F.
Michaud
,
R.
John
,
W. G.
Stevenson
,
L. M.
Epstein
,
U. B.
Tedrow
,
C.
Albert
, and
B. A.
Koplan
, “
Quality of life with atrial fibrillation: Do the spouses suffer as much as the patients?
,”
Pacing Clin. Electrophysiol.
34
(
7
),
804
809
(
2011
).
32.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
(
1
),
5
32
(
2001
).
33.
J.
Pan
and
W. J.
Tompkins
, “
A real-time QRS detection algorithm
,”
IEEE Trans. Biomed. Eng.
32
(
3
),
230
236
(
1985
).
You do not currently have access to this content.