We investigate the effects of environmental stochastic fluctuations on Kerr optical frequency combs. This spatially extended dynamical system can be accurately studied using the Lugiato–Lefever equation, and we show that when additive noise is accounted for, the correlations of the modal field fluctuations can be determined theoretically. We propose a general theory for the computation of these field fluctuations and correlations, which is successfully compared to numerical simulations.
REFERENCES
1.
K. J.
Vahala
, “Optical microcavities
,” Nature
424
, 839
–846
(2003
). 2.
A.
Matsko
et al., “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics
,” IPN Prog. Rep.
42
, 1
–51
(2005
).3.
A.
Chiasera
et al., “Spherical whispering-gallery-mode microresonators
,” Laser Photon. Rev.
4
, 457
–482
(2010
). 4.
D. V.
Strekalov
et al., “Nonlinear and quantum optics with whispering gallery resonators
,” J. Opt.
18
, 123002
(2016
). 5.
G.
Lin
, A.
Coillet
, and Y. K.
Chembo
, “Nonlinear photonics with high-Q whispering-gallery-mode resonators
,” Adv. Opt. Phot.
9
, 828
–890
(2017
). 6.
T. J.
Kippenberg
, S. M.
Spillane
, and K. J.
Vahala
, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity
,” Phys. Rev. Lett.
93
, 083904
(2004
). 7.
A. A.
Savchenkov
, A. B.
Matsko
, D.
Strekalov
, M.
Mohageg
, V. S.
Ilchenko
, and L.
Maleki
, “Low threshold optical oscillations in a whispering gallery mode CaF resonator
,” Phys. Rev. Lett.
93
, 243905
(2004
). 8.
P.
Del’Haye
, A.
Schliesser
, O.
Arcizet
, T.
Wilken
, R.
Holzwarth
, and T. J.
Kippenberg
, “Optical frequency comb generation from a monolithic microresonator
,” Nature
450
, 1214
–1217
(2007
). 9.
A.
Pasquazi
et al., “Micro-combs: A novel generation of optical sources
,” Phys. Rep.
729
, 1
–81
(2018
). 10.
J.
Pfeifle
et al., “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications
,” Phys. Rev. Lett.
114
, 093902
(2015
). 11.
K.
Saleh
and Y. K.
Chembo
, “On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs
,” Opt. Express
24
, 25043
–25056
(2016
). 12.
L. A.
Lugiato
and R.
Lefever
, “Spatial dissipative structures in passive optical systems
,” Phys. Rev. Lett.
58
, 2209
–2211
(1987
). 13.
Y. K.
Chembo
, D.
Gomila
, M.
Tlidi
, and C. R.
Menyuk
, “Theory and applications of the Lugiato-Lefever equation
,” Eur. Phys. J. D
71
, 299
(2017
). 14.
A. B.
Matsko
, A. A.
Savchenkov
, W.
Liang
, V. S.
Ilchenko
, D.
Seidel
, and L.
Maleki
, “Mode-locked Kerr frequency combs
,” Opt. Lett.
36
, 2845
–2847
(2011
). 15.
Y. K.
Chembo
and C. R.
Menyuk
, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators
,” Phys. Rev. A
87
, 053852
(2013
). 16.
S.
Coen
, H. G.
Randle
, T.
Sylvestre
, and M.
Erkintalo
, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model
,” Opt. Lett.
38
, 37
–39
(2013
). 17.
C.
Godey
, I. V.
Balakireva
, A.
Coillet
, and Y. K.
Chembo
, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes
,” Phys. Rev. A
89
, 063814
(2014
). 18.
P.
Parra-Rivas
, D.
Gomila
, M. A.
Matias
, S.
Coen
, and L.
Gelens
, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs
,” Phys. Rev. A
89
, 043813
(2014
). 19.
T.
Miyaji
, I.
Ohnishi
, and Y.
Tsutsumi
, “Bifurcation analysis to the Lugiato-Lefever equation in one space dimension
,” Physica D
239
, 2066
–2083
(2010
). 20.
G.
Kozyreff
, “Localized Turing patterns in nonlinear optical cavities
,” Physica D
241
, 939
–946
(2012
). 21.
C.
Godey
, “A bifurcation analysis for the Lugiato-Lefever equation
,” Eur. Phys. J. D
71
, 131
(2017
). 22.
L.
Delcey
and M.
Haragus
, “Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability
,” Phil. Trans. R. Soc. Lond. A
376
, 20170188
(2018
). 23.
Y. K.
Chembo
, “Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light
,” Phys. Rev. A
93
, 033820
(2016
). 24.
D.
Gomila
and P.
Colet
, “Fluctuations and correlations in hexagonal optical patterns
,” Phys. Rev. E
66
, 046223
(2002
). 25.
G.
Agez
, M. G.
Clerc
, E.
Louvergneaux
, and R. G.
Rojas
, “Bifurcations of emerging patterns in the presence of additive noise
,” Phys. Rev. E
87
, 042919
(2013
). 26.
F.
Leo
, L.
Gelens
, P.
Emplit
, M.
Haelterman
, and S.
Cohen
, “Dynamics of one-dimensional Kerr cavity solitons
,” Opt. Express
21
, 9180
–9191
(2013
). 27.
P.
Parra-Rivas
, D.
Gomila
, P.
Colet
, and L.
Gelens
, “Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation
,” Eur. Phys. J. D
71
, 198
(2017
). 28.
D.
Walgraef
, Spatio-Temporal Pattern Formation
(Springer
, New York
, 1997
).29.
C. W.
Gardiner
, Handbook of Stochastic Methods
(Springer-Verlag
, Berlin
, 1983
).30.
S.
Diallo
, G.
Lin
, and Y. K.
Chembo
, “Giant thermo-optical relaxation oscillations in mm-size whispering gallery mode disk-resonators
,” Opt. Lett.
40
, 3834
–3837
(2015
). 31.
G.
Lin
and Y. K.
Chembo
, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators
,” Opt. Lett.
41
, 3718
–3721
(2016
). 32.
G.
Lin
et al., “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators
,” Opt. Express
24
, 14880
–14894
(2016
). 33.
L. A.
Lugiato
and F.
Castelli
, “Quantum noise reduction in a spatial dissipative structure
,” Phys. Rev. Lett.
68
, 3284
–3286
(1992
). 34.
G.
Grynberg
and L.
Lugiato
, “Quantum properties of hexagonal patterns
,” Opt. Commun.
101
, 69
–73
(1993
). 35.
A.
Gatti
, H.
Wiedemann
, L. A.
Lugiato
, I.
Marzoli
, G. L.
Oppo
, and S. M.
Barnett
, “Langevin treatment of quantum fluctuations and optical patterns in optical parametric oscillators below threshold
,” Phys. Rev. A
56
, 877
–897
(1997
). 36.
R.
Zambrini
, M.
Hoyuelos
, A.
Gatti
, P.
Colet
, L.
Lugiato
, and M.
San Miguel
, “Quantum fluctuations in a continuous vectorial Kerr medium model
,” Phys. Rev. A
62
, 063801
(2000
). 37.
A.
Gatti
and S.
Mancini
, “Spatial correlations in hexagons generated via Kerr nonlinearity
,” Phys. Rev. A
65
, 013816
(2001
). 38.
I.
Pérez-Arjona
, E.
Roldán
, and G. J.
de Valcárcel
, “Theory of quantum fluctuations of optical dissipative structures and its application to the squeezing properties of bright cavity solitons
,” Phys. Rev. A
75
, 063802
(2007
). 39.
G.-L.
Oppo
and J.
Jeffers
, “Quantum fluctuations in cavity solitons,” in Quantum Imaging (Springer, New York, 2007).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.