Consider any network of n identical Kuramoto oscillators in which each oscillator is coupled bidirectionally with unit strength to at least μ(n1) other oscillators. Then, there is a critical value of μ above which the system is guaranteed to converge to the in-phase synchronous state for almost all initial conditions. The precise value of μ remains unknown. In 2018, Ling, Xu, and Bandeira proved that if each oscillator is coupled to at least 79.29% of all the others, global synchrony is ensured. In 2019, Lu and Steinerberger improved this bound to 78.89%. Here, we find clues that the critical connectivity may be exactly 75%. Our methods yield a slight improvement on the best known lower bound on the critical connectivity from 68.18% to 68.28%. We also consider the opposite end of the connectivity spectrum, where the networks are sparse rather than dense. In this regime, we ask how few edges one needs to add to a ring of n oscillators to turn it into a globally synchronizing network. We prove a partial result: all the twisted states in a ring of size n=2m can be destabilized by adding just O(nlog2n) edges. To finish the proof, one needs to rule out all other candidate attractors. We have done this for n8 but the problem remains open for larger n. Thus, even for systems as simple as Kuramoto oscillators, much remains to be learned about dense networks that do not globally synchronize and sparse ones that do.

1.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Bio.
16
(
1
),
15
42
(
1967
).
2.
C. S.
Peskin
, “
Mathematical aspects of heart physiology
,”
Courant Institute Lecture Notes
(
Courant Institute of Mathematical Sciences
,
1975
), pp.
268
278
, available at https://www.math.nyu.edu/faculty/peskin/heartnotes/index.html.
3.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
1984
).
4.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
(
6
),
1645
1662
(
1990
).
5.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
(
3–4
),
197
253
(
1994
).
6.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
7.
M. H.
Matheny
,
J.
Emenheiser
,
W.
Fon
,
A.
Chapman
,
A.
Salova
,
M.
Rohden
,
J.
Li
,
M. H.
de Badyn
,
M.
Pósfai
,
L.
Duenas-Osorio
et al., “
Exotic states in a simple network of nanoelectromechanical oscillators
,”
Science
363
(
6431
),
eaav7932
(
2019
).
8.
A.
Jadbabaie
,
N.
Motee
, and
M.
Barahona
, “On the stability of the Kuramoto model of coupled nonlinear oscillators,” in Proceedings of the 2004 American Control Conference (IEEE, 2004), Vol. 5, pp. 4296–4301.
9.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
, “
The size of the sync basin
,”
Chaos
16
(
1
),
015103
(
2006
).
10.
E.
Mallada
and
A.
Tang
, “Synchronization of phase-coupled oscillators with arbitrary topology,” in Proceedings of the 2010 American Control Conference (IEEE, 2010), pp. 1777–1782.
11.
R.
Taylor
, “
There is no non-zero stable fixed point for dense networks in the homogeneous Kuramoto model
,”
J. Phys. A Math. Theor.
45
(
5
),
055102
(
2012
).
12.
F.
Dörfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
(
6
),
1539
1564
(
2014
).
13.
L. M.
Pecora
,
F.
Sorrentino
,
A. M.
Hagerstrom
,
T. E.
Murphy
, and
R.
Roy
, “
Cluster synchronization and isolated desynchronization in complex networks with symmetries
,”
Nat. Comm.
5
,
4079
(
2014
).
14.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
(
9
),
097616
(
2015
).
15.
E. A.
Canale
and
P.
Monzón
, “
Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization
,”
Chaos
25
(
2
),
023106
(
2015
).
16.
D.
Mehta
,
N. S.
Daleo
,
F.
Dörfler
, and
J. D.
Hauenstein
, “
Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis
,”
Chaos
25
(
5
),
053103
(
2015
).
17.
F. A.
Rodrigues
,
T. K.
DM. Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
18.
D. M.
Abrams
,
L. M.
Pecora
, and
A. E.
Motter
, “
Introduction to focus issue: Patterns of network synchronization
,”
Chaos
26
(
9
),
094601
(
2016
).
19.
L.
DeVille
and
B.
Ermentrout
, “
Phase-locked patterns of the Kuramoto model on 3-regular graphs
,”
Chaos
26
(
9
),
094820
(
2016
).
20.
Y.
Sokolov
and
G. B.
Ermentrout
, “When is sync globally stable in sparse networks of identical Kuramoto oscillators?,” arXiv:1812.08153 (2018).
21.
S.
Ling
,
R.
Xu
, and
A. S.
Bandeira
, “On the landscape of synchronization networks: A perspective from nonconvex optimization,” arXiv:1809.11083 (2018).
22.
J.
Lu
and
S.
Steinerberger
, “Synchronization of Kuramoto oscillators in dense networks,” arXiv:1911.12336 (2019).
23.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
(
JHU Press
,
2012
), Vol. 3.
24.
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
,
NIST Handbook of Mathematical Functions Hardback and CD-ROM
(
Cambridge University Press
,
2010
).
25.
D. R.
Grayson
and
M. E.
Stillman
, see http://www.math.uiuc.edu/Macaulay2/ for “Macaulay2, A Software System for Research in Algebraic Geometry.”
26.
O.
Simeone
,
U.
Spagnolini
,
Y.
Bar-Ness
, and
S. H.
Strogatz
, “
Distributed synchronization in wireless networks
,”
IEEE Sig. Proc. Mag.
25
(
5
),
81
97
(
2008
).
27.
J.
Yick
,
B.
Mukherjee
, and
D.
Ghosal
, “
Wireless sensor network survey
,”
Comput. Netw.
52
(
12
),
2292
2330
(
2008
).
28.
Y.-W.
Hong
and
A.
Scaglione
, “
A scalable synchronization protocol for large scale sensor networks and its applications
,”
IEEE J. Sel. Areas Comm.
23
(
5
),
1085
1099
(
2005
).
29.
G.
Werner-Allen
,
G.
Tewari
,
A.
Patel
,
M.
Welsh
, and
R.
Nagpal
, “Firefly-inspired sensor network synchronicity with realistic radio effects,” in Proceedings of the 3rd International Conference Embedded Network Sensor Systems (ACM, 2005), pp. 142–153.
30.
R. K.
Dokania
,
X. Y.
Wang
,
S. G.
Tallur
, and
A. B.
Apsel
, “
A low power impulse radio design for body-area-networks
,”
IEEE Trans. Circuits Syst. I Regul. Pap.
58
(
7
),
1458
1469
(
2011
).
You do not currently have access to this content.