Two paradigmatic nonlinear oscillatory models with parametric excitation are studied. The authors provide theoretical evidence for the appearance of extreme events (EEs) in those systems. First, the authors consider a well-known Liénard type oscillator that shows the emergence of EEs via two bifurcation routes: intermittency and period-doubling routes for two different critical values of the excitation frequency. The authors also calculate the return time of two successive EEs, defined as inter-event intervals that follow Poisson-like distribution, confirming the rarity of the events. Further, the total energy of the Liénard oscillator is estimated to explain the mechanism for the development of EEs. Next, the authors confirmed the emergence of EEs in a parametrically excited microelectromechanical system. In this model, EEs occur due to the appearance of a stick-slip bifurcation near the discontinuous boundary of the system. Since the parametric excitation is encountered in several real-world engineering models, like macro- and micromechanical oscillators, the implications of the results presented in this paper are perhaps beneficial to understand the development of EEs in such oscillatory systems.

1.
M.
Deschenes
,
J. P.
Roy
, and
M.
Steriade
, “
Thalamic bursting mechanism: An inward slow current revealed by membrane hyperpolarization
,”
Brain Res.
239
,
289
(
1982
).
2.
G. S.
Medvedev
, “
Transition to bursting via deterministic chaos
,”
Phys. Rev. Lett.
97
,
048102
(
2006
).
3.
P.
Channell
,
G.
Cymbalyuk
, and
A.
Shilnikov
, “
Origin of bursting through homoclinic spike adding in a neuron model
,”
Phys. Rev. Lett.
98
,
134101
(
2007
).
4.
D. J.
DeShazer
,
J.
García-Ojalvo
, and
R.
Roy
, “
Bursting dynamics of a fiber laser with an injected signal
,”
Phys. Rev. E
67
,
036602
(
2003
).
5.
K.
Dysthe
,
H. E.
Krogstad
, and
P.
Müller
, “
Oceanic rogue waves
,”
Annu. Rev. Fluid Mech.
40
,
287
310
(
2008
).
6.
M. A.
Donelan
and
A.-K.
Magnusson
, “
The making of the Andrea wave and other rogues
,”
Sci. Rep.
7
,
44124
(
2017
).
7.
S.
Bialonski
,
G.
Ansmann
, and
H.
Kantz
, “
Data-driven prediction and prevention of extreme events in a spatially extended excitable system
,”
Phys. Rev. E
92
,
042910
(
2015
).
8.
S.
Bialonski
,
D. A.
Caron
,
J.
Schloen
,
U.
Feudel
,
H.
Kantz
, and
S. D.
Moorthi
, “
Phytoplankton dynamics in the Southern California bight indicate a complex mixture of transport and biology
,”
J. Plankton Res.
38
,
1077
1091
(
2016
).
9.
D.
Sornette
,
Critical Phenomena in Natural Sciences: Chaos, Fractals, Self-organization and Disorder: Concepts and Tools
(
Springer
,
Berlin
,
2003
).
10.
M.
Ghil
et al., “
Extreme events: Dynamics, statistics and prediction
,”
Nonlin. Processes Geophys.
18
,
295
(
2011
).
11.
L.
Zhao
,
Y.-C.
Lai
,
K.
Park
, and
N.
Ye
, “
Onset of traffic congestion in complex networks
,”
Phys. Rev. E
71
,
026125
(
2005
).
12.
P.
Echenique
,
J. G.
Gardeńes
, and
Y.
Moreno
, “
Dynamics of jamming transitions in complex networks
,”
Europhys. Lett.
71
,
325
(
2005
).
13.
Y.-Z.
Chen
,
Z.-G.
Huang
,
H.-F.
Zhang
,
D.
Eisenberg
,
T. P.
Seager
, and
Y.-C.
Lai
, “
Extreme events in multilayer, interdependent complex networks and control
,”
Sci. Rep.
5
,
17277
(
2015
).
14.
I.
Dobson
,
B. A.
Carreras
,
V. E.
Lynch
, and
D. E.
Newman
, “
Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization
,”
Chaos
17
,
026103
(
2007
).
15.
S. L.
Kingston
,
K.
Thamilmaran
,
P.
Pal
,
U.
Feudel
, and
S. K.
Dana
, “
Extreme events in the forced Liénard system
,”
Phys. Rev. E
96
,
052204
(
2017
).
16.
S.
Kumarasamy
and
A. N.
Pisarchik
, “
Extreme events in systems with discontinuous boundaries
,”
Phys. Rev. E
98
,
032203
(
2018
).
17.
M.
Farazmand
and
T. P.
Sapsis
, “
Extreme events: Mechanisms and prediction
,”
Appl. Mech. Rev.
71
,
050801
(
2019
).
18.
K.
Lehnertz
, “
Epilepsy and nonlinear dynamics
,”
J. Biological Phys.
34
,
253
(
2008
).
19.
K.
Lehnertz
, “Epilepsy: Extreme events in the human brain,” in Extreme Events in Nature and Society, edited by S. Albeverio, V. Jentsch, and H. Kantz (Springer, Berlin, 2006), pp. 123–143.
20.
H.
Bailung
,
S. K.
Sharma
, and
Y.
Nakamura
, “
Observation of peregrine solitons in a multicomponent plasma with negative ions
,”
Phys. Rev. Lett.
107
,
255005
(
2011
).
21.
A.
Mussot
,
A.
Kudlinski
,
M.
Kolobov
,
E.
Louvergneaux
,
M.
Douay
, and
M.
Taki
, “
Observation of extreme temporal events in CW-pumped supercontinuum
,”
Opt. Express
17
,
17010
17015
(
2009
).
22.
A.
Montina
,
U.
Bortolozzo
,
S.
Residori
, and
F. T.
Arecchi
, “
Non-Gaussian statistics and extreme waves in a nonlinear optical cavity
,”
Phys. Rev. Lett.
103
,
173901
(
2009
).
23.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
, “
Optical rogue waves
,”
Nature
450
,
1054
1057
(
2007
).
24.
S.
Randoux
and
P.
Suret
, “
Experimental evidence of extreme value statistics in Raman fiber lasers
,”
Opt. Lett.
37
,
500
502
(
2012
).
25.
G.
Ansmann
,
R.
Karnatak
,
K.
Lehnertz
, and
U.
Feudel
, “
Extreme events in excitable systems and mechanisms of their generation
,”
Phys. Rev. E
88
,
052911
(
2013
).
26.
R.
Karnatak
,
G.
Ansmann
,
U.
Feudel
, and
K.
Lehnertz
, “
Route to extreme events in excitable systems
,”
Phys. Rev. E
90
,
022917
(
2014
).
27.
A.
Saha
and
U.
Feudel
, “
Extreme events in FitzHugh–Nagumo oscillators coupled with two time delays
,”
Phys. Rev. E
95
,
062219
(
2017
);
[PubMed]
A.
Saha
and
U.
Feudel
, “
Riddled basins of attraction in systems exhibiting extreme events
,”
Chaos
28
,
033610
(
2018
).
[PubMed]
28.
S. L.
Kingston
and
K.
Thamilmaran
, “
Bursting oscillations and mixed-mode oscillations in driven Liénard system
,”
Int. J. Bifurcation Chaos
27
,
1730025
(
2017
).
29.
P. P.
Galuzio
,
R. L.
Viana
, and
S. R.
Lopes
, “
Control of extreme events in the bubbling onset of wave turbulence
,”
Phys. Rev. E
89
,
040901(R)
(
2014
).
30.
A.
Rothkegel
and
K.
Lehnertz
, “
Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators
,”
New J. Phys.
16
,
055006
(
2014
).
31.
M. G.
Clerc
,
G. G.
Cortés
, and
M.
Wilson
, “
Extreme events induced by spatiotemporal chaos in experimental optical patterns
,”
Opt. Lett.
41
,
2711
2714
(
2016
).
32.
W.
Chang
,
J. M. S.
Crespo
,
P.
Vouzas
, and
N.
Akhmediev
, “
Extreme amplitude spikes in a laser model described by the complex Ginzburg–Landau equation
,”
Opt. Lett.
40
,
2949
2952
(
2015
).
33.
R.
Suresh
and
V. K.
Chandrasekar
, “
Influence of time-delay feedback on extreme events in a forced Liénard system
,”
Phys. Rev. E
98
,
052211
(
2018
).
34.
I.
Elizalde
and
J.
Ancheyta
, “
Application of a three-stage approach for modeling the complete period of catalyst deactivation during hydrotreating of heavy oil
,”
Fuel
138
,
45
51
(
2014
).
35.
Y.
Jia
,
J.
Yan
,
K.
Soga
, and
A. A.
Seshia
, “
Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude
,”
Smart Mater. Struct.
23
,
065011
(
2014
).
36.
Y.
Jia
,
J.
Yan
,
K.
Soga
, and
A. A.
Seshia
, “
Multi-frequency operation of a MEMS vibration energy harvester by accessing five orders of parametric resonance
,”
J. Phys. Conf. Ser.
476
,
012126
(
2013
).
37.
Y.
Jia
,
S.
Du
, and
A. A.
Seshia
, “
Twenty-eight orders of parametric resonance in a microelectromechanical device for multi-band vibration energy harvesting
,”
Sci. Rep.
6
,
30167
(
2016
).
38.
J. F.
Rhoads
,
S. W.
Shaw
,
K. L.
Turner
, and
R.
Baskaran
, “
Tunable microelectromechanical filters that exploit parametric resonance
,”
J. Vib. Acoust.
127
,
423
(
2005
).
39.
A.
Champneys
, “Dynamics of parametric excitation,” in Mathematics of Complexity and Dynamical Systems, edited by R. Meyers (Springer, New York, 2012).
40.
K.
Schiele
, “
On the stabilization of a parametrically driven inverted double pendulum
,”
Z. Angew. Math. Mech.
77
,
143
146
(
1997
).
41.
F.
Lakrad
and
W.
Schiehlen
, “
Effects of a low frequency parametric excitation
,”
Chaos Soliton. Fract.
22
,
1149
1164
(
2004
).
42.
Y.
Yue
,
H.
Tang
,
X.
Han
, and
Q.
Bi
, “
Bursting mechanism in a time-delayed oscillator with slowly varying external forcing
,”
Commun. Nonlinear Sci. Numer. Simulat.
19
,
1175
1184
(
2014
).
43.
X.
Han
,
Q.
Bi
,
P.
Ji
, and
J.
Kurths
, “
Fast–slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies
,”
Phys. Rev. E
92
,
012911
(
2015
).
44.
X.
Han
,
M.
Wei
,
Q.
Bi
, and
J.
Kurths
, “
Obtaining amplitude-modulated bursting by multiple-frequency slow parametric modulation
,”
Phys. Rev. E
97
,
012202
(
2018
).
45.
X.
Han
,
Y.
Zhang
,
Q.
Bi
, and
J.
Kurths
, “
Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations
,”
Chaos
28
,
043111
(
2018
).
46.
X.
Han
,
Q.
Bi
, and
J.
Kurths
, “
Route to bursting via pulse-shaped explosion
,”
Phys. Rev. E
98
,
010201(R)
(
2018
).
47.
C.
Metayer
,
A.
Serres
,
E. J.
Rosero
,
W. A. S.
Barbosa
,
F. M.
de Aguiar
,
J. R.
Rios Leite
, and
J. R.
Tredicce
, “
Extreme events in chaotic lasers with modulated parameter
,”
Opt. Express
22
,
19850
(
2014
).
48.
C.
Bonatto
and
A.
Endler
, “
Extreme and superextreme events in a loss-modulated CO2 laser: Nonlinear resonance route and precursors
,”
Phys. Rev. E
96
,
012216
(
2017
).
49.
A.
Gomel
,
J. M.
Boyer
,
C.
Metayer
, and
J. R.
Tredicce
, “
Extreme events in lasers with modulation of the field polarization
,”
Adv. Cond. Matter Phys.
2019
,
7632852
(
2019
).
50.
S.
Liu
,
A.
Davidson
, and
Q.
Lin
, “
Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system
,”
J. Micromech. Microeng.
14
,
1064
(
2004
).
51.
D. R.
Evans
,
P.
Tayati
,
H.
An
,
P. K.
Lam
,
V. S. J.
Craig
, and
T. J.
Senden
, “
Laser actuation of cantilevers for picometre amplitude dynamic force microscopy
,”
Sci. Rep.
4
,
5567
(
2014
).
52.
P. M.
Geffert
and
W.
Just
, “
Nonequilibrium dynamics of a pure dry friction model subjected to colored noise
,”
Phys. Rev. E
95
,
062111
(
2017
).
53.
L.
Li
and
A. C.
Luo
, “
Periodic orbits in a second-order discontinuous system with an elliptic boundary
,”
Int. J. Bifurcation Chaos
26
,
1650224
(
2016
).
54.
F. J.
Poulin
and
G. R.
Flierl
, “
The stochastic Mathieu’s equation
,”
Proc. R. Soc. A
464
,
1885
1904
(
2008
).
55.
M. A.
Mohamad
and
T. P.
Sapsis
, “
Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation
,”
Ocean Eng.
120
,
289
297
(
2016
).
56.
M. A.
Mohamad
and
T. P.
Sapsis
, “
Probabilistic description of extreme events in intermittently unstable dynamical systems excited by correlated stochastic processes
,”
SIAM-ASA J. Uncertain
3
,
709
736
(
2015
).
57.
V. K.
Chandrasekar
,
M.
Senthilvelan
, and
M.
Lakshmanan
, “
Unusual Liénard-type nonlinear oscillator
,”
Phys. Rev. E
72
,
066203
(
2005
).
58.
A.
Eichler
,
J.
Moser
,
J.
Chaste
,
M.
Zdrojek
,
I.
Wilson-Rae
, and
A.
Bachtold
, “
Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene
,”
Nat. Nanotechnol.
6
,
339
342
(
2011
).
59.
V. K.
Chandrasekar
,
S. N.
Pandey
,
M.
Senthilvelan
, and
M.
Lakshmanan
, “
Application of extended Prelle–Singer procedure to the generalized modified Emden type equation
,”
Chaos Soliton. Fract.
26
,
1399
1406
(
2005
).
60.
A.
Mishra
,
C.
Hens
,
M.
Bose
,
P. K.
Roy
, and
S. K.
Dana
, “
Chimera-like states in a network of oscillators under attractive and repulsive global coupling
,”
Phys. Rev. E
92
,
062920
(
2015
).
61.
S.
Karthiga
,
V. K.
Chandrasekar
,
M.
Senthilvelan
, and
M.
Lakshmanan
, “
Twofold PT symmetry in nonlinearly damped dynamical systems and tailoring PT regions with position-dependent loss-gain profiles
,”
Phys. Rev. A
93
,
012102
(
2016
).
62.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaotic attractors in crisis
,”
Phys. Rev. Lett.
48
,
1507
(
1982
);
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics
,”
Science
,
238
,
632
(
1987
).
[PubMed]
63.
C.
Grebogi
,
E.
Ott
,
F.
Romeiras
, and
J. A.
Yorke
, “
Critical exponents for crisis-induced intermittency
,”
Phys. Rev. A
36
,
5365
(
1987
).
64.
E.
Eschenazi
,
H. G.
Solari
, and
R.
Gilmore
, “
Basins of attraction in driven dynamical systems
,”
Phys. Rev. A
39
,
2609
(
1989
).
65.
A.
Mishra
,
S.
Saha
,
M.
Vigneshwaran
,
P.
Pal
,
T.
Kapitaniak
, and
S. K.
Dana
, “
Dragon–King-like extreme events in coupled bursting neurons
,”
Phys. Rev. E
97
,
062311
(
2018
).
66.
J. A.
Reinoso
,
J.
Z-Munt
, and
C.
Maosller
, “
Extreme intensity pulses in a semiconductor laser with a short external cavity
,”
Phys. Rev. E
87
,
062913
(
2013
).
67.
J. Z.
Munt
,
B.
Garbin
,
S.
Barland
,
M.
Giudici
,
J. R.
Rios Leite
,
C.
Masoller
, and
J. R.
Tredicce
, “
Rogue waves in optically injected lasers: Origin, predictability, and suppression
,”
Phys. Rev. A
87
,
035802
(
2013
).
68.
S. R.
Massel
,
Ocean Surface Waves: Their Physics and Prediction
(
World Scientific
,
Singapore
,
1996
).
69.
C.
Kharif
,
E.
Pelinovsky
, and
A.
Slunyaev
,
Rogue Waves in the Ocean
(
Springer
,
Berlin
,
2009
).
70.
C.
Bonatto
,
M.
Feyereisen
,
S.
Barland
,
M.
Giudici
,
C.
Masoller
,
J. R.
Rios Leite
, and
J. R.
Tredicce
, “
Deterministic optical rogue waves
,”
Phys. Rev. Lett.
107
,
053901
(
2011
).
71.
A.
Ray
,
A.
Mishra
,
D.
Ghosh
,
T.
Kapitaniak
,
S. K.
Dana
, and
C.
Hens
, “
Extreme events in a network of heterogeneous Josephson junctions
,”
Phys. Rev. E
101
,
032209
(
2020
).
72.
S. N.
Chowdhury
,
S.
Majhi
,
M.
Ozer
,
D.
Ghosh
, and
M.
Perc
, “
Synchronization to extreme events in moving agents
,”
New J. Phys.
21
,
073048
(
2019
).
73.
L.
Chen
,
Y.
Deng
,
W.
Luo
,
Z.
Wang
, and
S.
Zeng
, “
Detection of bursts in neuronal spike trains by the mean inter-spike interval method
,”
Prog. Nat. Sci.
19
,
229
235
(
2009
).
74.
M. A.
Fitzurka
and
D. C.
Tam
, “
A joint interspike interval difference stochastic spike train analysis: Detecting local trends in the temporal firing patterns of single neurons
,”
Biol. Cybern.
80
,
309
326
(
1999
).
75.
M.
Han
and
P.
Yu
, “Fundamental theory of the Melnikov function method,” in Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles (Springer, London, 2012), Vol. 181, pp. 261–270.
76.
V. N.
Chizhevsky
,
R.
Corbalán
, and
A. N.
Pisarchik
, “
Attractor splitting induced by resonant perturbations
,”
Phys. Rev. E
56
,
1580
(
1997
).
77.
J. F.
Rhoads
,
S. W.
Shaw
, and
K. L.
Turner
, “
Nonlinear dynamics and its applications in micro- and nanoresonators
,”
J. Dyn. Syst. Meas. Control
132
,
034001
(
2010
).
78.
S. K.
De
and
N. R.
Aluru
, “
Complex nonlinear oscillations in electrostatically actuated microstructures
,”
J. Microelectromech. Syst.
15
,
355
369
(
2006
).
79.
S. K.
De
and
N. R.
Aluru
,
Phys. Rev. Lett.
94
,
204101
(
2005
).
80.
N. J.
Miller
,
S. W.
Shaw
,
L. A.
Oropeza-Ramos
, and
K. L.
Turner
, “A MEMS-based rate gyro based on parametric resonance,” in
Proceedings of the ESDA 2008: The 9th Biennial ASME Conference on Engineering Systems Design and Analysis
(The American Society of Mechanical Engineers, 2008).
81.
B. J.
Gallacher
,
J. S.
Burdess
, and
K. M.
Harish
, “
A control scheme for a MEMS electrostatic resonant gyroscope excited using combined parametric excitation and harmonic forcing
,”
J. Micromech. Microeng.
16
,
320
(
2006
).
82.
N.
Cohen
,
I.
Bucher
, and
M.
Feldman
, “
Slow–fast response decomposition of a bi-stable energy harvester
,”
Mech. Syst. Sig. Proc.
31
,
29
39
(
2012
).
You do not currently have access to this content.