The observable outputs of many complex dynamical systems consist of time series exhibiting autocorrelation functions of great diversity of behaviors, including long-range power-law autocorrelation functions, as a signature of interactions operating at many temporal or spatial scales. Often, numerical algorithms able to generate correlated noises reproducing the properties of real time series are used to study and characterize such systems. Typically, many of those algorithms produce a Gaussian time series. However, the real, experimentally observed time series are often non-Gaussian and may follow distributions with a diversity of behaviors concerning the support, the symmetry, or the tail properties. It is always possible to transform a correlated Gaussian time series into a time series with a different marginal distribution, but the question is how this transformation affects the behavior of the autocorrelation function. Here, we study analytically and numerically how the Pearson’s correlation of two Gaussian variables changes when the variables are transformed to follow a different destination distribution. Specifically, we consider bounded and unbounded distributions, symmetric and non-symmetric distributions, and distributions with different tail properties from decays faster than exponential to heavy-tail cases including power laws, and we find how these properties affect the correlation of the final variables. We extend these results to a Gaussian time series, which are transformed to have a different marginal distribution, and show how the autocorrelation function of the final non-Gaussian time series depends on the Gaussian correlations and on the final marginal distribution. As an application of our results, we propose how to generalize standard algorithms producing a Gaussian power-law correlated time series in order to create a synthetic time series with an arbitrary distribution and controlled power-law correlations. Finally, we show a practical example of this algorithm by generating time series mimicking the marginal distribution and the power-law tail of the autocorrelation function of real time series: the absolute returns of stock prices.

1.
C.-K.
Peng
,
J.
Mietus
,
J. M.
Hausdorff
,
S.
Havlin
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Long-range anticorrelations and non-Gaussian behavior of the heartbeat
,”
Phys. Rev. Lett.
70
,
1343
(
1993
).
2.
P. C.
Ivanov
, “Long-range dependence in heartbeat dynamics,” in Processes with Long Range Correlations: Theory and Applications, edited by G. Rangajaran and M. Ding, Lecture Notes in Physics Vol. 621 (Springer, Berlin, 2003), p. 339.
3.
P. C.
Ivanov
,
M. G.
Rosenblum
,
C. K.
Peng
,
J.
Mietus
,
S.
Havlin
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis
,”
Nature
383
,
323
(
1996
).
4.
P. C.
Ivanov
,
M. G.
Rosenblum
,
C. K.
Peng
,
J.
Mietus
,
S.
Havlin
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Scaling and universality in heart rate variability distributions
,”
Physica A
249
,
587
(
1998
).
5.
P. C.
Ivanov
,
A.
Bunde
,
L. A. N.
Amaral
,
S.
Havlin
,
J.
Fritsch-Yelle
,
R. M.
Baevsky
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Sleep-wake differences in scaling behavior of the human heartbeat: Analysis of terrestrial and long-term space flight data
,”
Europhys. Lett.
48
,
594
(
1999
).
6.
P. C.
Ivanov
, “
From 1/f noise to multifractal cascades in heartbeat dynamics
,”
Chaos
11
,
641
(
2001
).
7.
K.
Likenkaer-Hansen
,
V. V.
Nikouline
,
J. M.
Palva
, and
R. J.
Ilmoniemi
, “
Long-range temporal correlations and scaling behavior in human brain oscillations
,”
J. Neurosci.
21
,
1370
(
2001
).
8.
C.-K.
Peng
,
J. E.
Mietus
,
Y.
Liu
,
C.
Lee
,
J. M.
Hausdorff
,
H. E.
Stanley
,
A. L.
Goldberger
, and
L. A.
Lipsitz
, “
Quantifying fractal dynamics of human respiration: Age and gender effects
,”
Ann. Biomed. Eng.
30
,
683
(
2002
).
9.
M.
Duarte
and
V. M.
Zatsiorsky
, “
On the fractal properties of natural human standing
,”
Neurosci. Lett.
283
,
173
(
2000
).
10.
M. T.
Blázquez
,
M.
Anguiano
,
F. A.
de Saavedra
,
A. M.
Lallena
, and
P.
Carpena
, “
Study of the human postural control system during quiet standing using detrended fluctuation analysis
,”
Physica A
388
,
1857
(
2009
).
11.
M. T.
Blázquez
,
M.
Anguiano
,
F. A.
de Saavedra
,
A. M.
Lallena
, and
P.
Carpena
, “
Characterizing the human postural control system using detrended fluctuation analysis
,”
J. Comput. Appl. Math.
233
,
1478
(
2010
).
12.
K.
Hu
,
P. C.
Ivanov
,
Z.
Chen
,
M. F.
Hilton
,
H. E.
Stanley
, and
S. A.
Shea
, “
Non-random fluctuations and multi-scale dynamics regulation of human activity
,”
Physica A
337
,
307
(
2004
).
13.
C.-K.
Peng
,
S. V.
Buldyrev
,
A. L.
Goldberger
,
S.
Havlin
,
F.
Sciortino
,
M.
Simons
and
H. E.
Stanley
, “
Long-range correlations in nucleotide sequences
,”
Nature
356
,
168
(
1992
).
14.
R. F.
Voss
, “
Evolution of long-range fractal correlations and 1/f nosie in DNA base sequences
,”
Phys. Rev. Lett.
68
,
3805
(
1992
).
15.
P. C.
Ivanov
,
L. A.
Nunes Amaral
,
A. L.
Goldberger
, and
H. E.
Stanley
, “
Stochastic feedback and the regulation of biological rhythms
,”
Europhys. Lett.
43
,
363
(
1998
).
16.
E. E.
Peters
,
Fractal Market Analysis: Applying Chaos Theory to Investment and Economics
(
John Wiley & Sons
,
1994
).
17.
R. F.
Voss
and
J.
Clarke
, “
1/f noise in musics: Music from 1/f noise
,”
J. Acoust. Soc. Am.
63
,
258
(
1978
).
18.
S.
Lovejoy
and
B. B.
Mandelbrot
, “
Fractal properties of rain and a fractal model
,”
Tellus A
37
,
209
(
1985
).
19.
I.
Bartos
and
I. M.
Jánosi
, “
Nonlinear correlations of daily temperature records over land
,”
Nonlin. Process. Geophys.
13
,
571
(
2006
).
20.
P. A.
Varotsos
,
N. V.
Sarlis
, and
E. S.
Skordas
, “
Long-range correlations in the electric signals that precede rupture
,”
Phys. Rev. E
66
,
011902
(
2002
).
21.
U. R.
Acharya
,
K. P.
Joseph
,
N.
Kannathal
,
C. M.
Lim
, and
J. S.
Suri
, “
Heart rate variability: A review
,”
Med. Biol. Eng. Comput.
44
,
1031
(
2006
).
22.
Z. R.
Struzik
, “
Wavelet methods in (financial) time-series processing
,”
Physica A
296
,
307
(
2001
).
23.
H. A.
Makse
,
S.
Havlin
,
M.
Schwartz
, and
H. E.
Stanley
, “
Method for generating long-range correlations for large systems
,”
Phys. Rev. E
53
,
5445
(
1996
).
24.
P.
Bernaola-Galvan
,
J. L.
Oliver
,
M.
Hackenberg
,
A. V.
Coronado
,
P. C.
Ivanov
, and
P.
Carpena
, “
Segmentation of time series with long-range fractal correlations
,”
Eur. Phys. J. B
85
,
211
(
2012
).
25.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J.
Doyne Farmer
, “
Testing for nonlinearity in time series: The method of surrogate data
,”
Physica D
58
,
77
(
1992
).
26.
T.
Schreiber
and
A.
Schmitz
, “
Improved surrogate data for nonlinearity tests
,”
Phys. Rev. Lett.
77
,
635
(
1996
).
27.
D.
Kugiumtzis
, “
Surrogate data test for nonlinearity including nonmonotonic transforms
,”
Phys. Rev. E
62
,
R25
(
2000
).
28.
C. J.
Keylock
, “
A wavelet method for surrogate data generation
,”
Physica D
225
,
219
(
2007
).
29.
J. M.
Halley
and
D.
Kugiumtzis
, “
Nonparametric testing and trend in some climatic records
,”
Clim. Change
109
,
549
(
2011
).
30.
W. H.
Press
,
S. A.
Teukolsly
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 90
(
Cambridge University Press
,
Cambridge
,
1990
).
31.
R.
Nelsen
,
An Introduction to Copulas
(
Springer
,
New York
,
1999
).
32.
R. S.
Calsaverini
and
R.
Vicente
, “
An information-theoretic approach to statistical dependence: Copula information
,”
Europhys. Lett.
88
,
68003
(
2009
).
33.
S. T.
Li
and
J. L.
Hammond
, “
Generation of pseudorandom numbers with specified univariate distributions and correlation coefficients
,”
IEEE Trans. Syst. Man. Cyber.
5
,
557
(
1975
).
34.
H.
Chen
, “
Initialization for NORTA: Generation of random vectors with specified marginals and correlations
,”
INFORMS J. Comput.
13
,
312
(
2001
).
35.
D.
Kugiumtzis
and
E.
Bora-Senta
, “
Normal correlation coefficient of non-normal variables using piece-wise linear approximation
,”
Comput. Stat.
25
,
645
(
2010
).
36.
Y. L.
Tong
,
The Multivariate Normal Distribution
(
Springer
,
New York
,
1990
).
37.
M. C.
Cario
and
B. L.
Nelson
, “
Autoregressive to anything: Time-series input processes for simulation
,”
Oper. Res. Lett.
19
,
51
(
1996
).
38.
Y.
Ashkenazy
,
S.
Havlin
,
P. C.
Ivanov
,
C.-K.
Peng
,
V.
Schulte-Frohlinde
, and
H. E.
Stanley
, “
Magnitude and sign scaling in power-law correlated time series
,”
Physica A
323
,
19
(
2003
).
39.
B.
Podobnik
,
P. C.
Ivanov
,
V.
Jazbinsek
,
Z.
Trontelj
,
H.
Eugene Stanley
, and
I.
Grosse
, “
Power-law correlated processes with asymmetric distributions
,”
Phys. Rev. E
71
,
025104
(
2005
).
40.
P. C.
Ivanov
,
A.
Yuen
,
B.
Podobnik
, and
Y.
Lee
, “
Common scaling patterns in intertrade times of U.S. stocks
,”
Phys. Rev. E
69
,
056107
(
2004
).
41.
P. C.
Ivanov
,
A.
Yuen
, and
P.
Perakakis
, “
Impact of stock market structure on intertrade time and price dynamics
,”
PLoS ONE
9
(
4
),
e92885
(
2014
).
42.
E. W.
Ng
and
M.
Geller
, “
A table of integrals of the error functions
,”
J. Res. Nat. Bureau Stand. B Math. Sci.
73
(
1
),
1
20
(
1969
).
43.
D.
Kugiumtzis
, “
Statically transformed autoregressive process and surrogate data test for nonlinearity
,”
Phys. Rev. E
66
,
025201
(
2002
).
44.
H. E.
Hurst
, “
Long-term storage capacity of reservoirs
,”
Trans. Am. Soc. Civ. Eng.
116
,
770
779
(
1951
).
45.
J.
Beran
,
Statistics for Long-Memory Processes
(
Chapman and Hall/CRC
,
1998
).
46.
F. A. B. F.
de Moura
and
M. L.
Lyra
, “
Delocalization in the 1D Anderson model with long-range correlated disorder
,”
Phys. Rev. Lett.
81
,
3735
(
1998
).
47.
C.
Carretero-Campos
,
P.
Bernaola-Galván
,
P. C.
Ivanov
, and
P.
Carpena
, “
Phase transitions in the first-passage time of scale-invariant correlated processes
,”
Phys. Rev. E
85
,
011139
(
2012
).
48.
T.
Kalisky
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Volatility of linear and nonlinear time series
,”
Phys. Rev. E
72
,
011913
(
2005
).
49.
A. V.
Coronado
and
P.
Carpena
, “
Size effects on correlation measures
,”
J. Biol. Phys.
31
,
121
(
2005
).
50.
M.
Gómez-Extremera
,
P.
Carpena
,
P. C.
Ivanov
, and
P. A.
Bernaola-Galván
, “
Magnitude and sign of long-range correlated time series: Decomposition and surrogate signal generation
,”
Phys. Rev. E
93
,
042201
(
2016
).
51.
P.
Carpena
,
M.
Gómez-Extremera
,
C.
Carretero-Campos
,
P. A.
Bernaola-Galván
, and
A. V.
Coronado
, “
Spurious results of fluctuation analysis techniques in magnitude and sign correlations
,”
Entropy
19
,
261
(
2017
).
52.
P. A.
Bernaola-Galván
,
M.
Gómez Extremera
,
P.
Carpena
, and
A. R.
Romance
, “
Correlations in magnitude series to assess nonlinearities. Application to multifractal models and hearbeat fluctuations
,”
Phys. Rev. E
96
,
032218
(
2017
).
53.
T.
Kawasaki
,
Y.
Kakai
,
T.
Ikuta
, and
R.
Shimizu
, “
Wave field restoration using three dimensional Fourier filtering method
,”
Ultramicroscopy
90
,
47
(
2001
).
54.
K.
Hu
,
P. C.
Ivanov
,
Z.
Chen
,
P.
Carpena
, and
H. E.
Stanley
, “
Effect of trends on detrended fluctuation analysis
,”
Phys. Rev. E
64
,
011114
(
2001
).
55.
Z.
Chen
,
K.
Hu
,
P.
Carpena
,
P.
Bernaola-Galvan
,
H. E.
Stanley
, and
P. C.
Ivanov
, “
Effect of nonlinear filters on detrended fluctuation analysis
,”
Phys. Rev. E
71
,
011104
(
2005
).
56.
P.
Carpena
,
P.
Bernaola-Galvan
,
A. V.
Coronado
,
M.
Hackenberg
, and
J. L.
Oliver
, “
Identifying characteristic scales in the human genome
,”
Phys. Rev. E
75
,
032903
(
2007
).
57.
P.
Carpena
,
J. L.
Oliver
,
M.
Hackenberg
,
A. V.
Coronado
,
G.
Barturen
, and
P.
Bernaola-Galvan
, “
High-level organization of isochores into gigantic superstructures in the human genome
,”
Phys. Rev. E
83
,
031908
(
2011
).
58.
B.
Podobnik
,
D. F.
Fu
,
H. E.
Stanley
, and
P. C.
Ivanov
, “
Power-law autocorrelated stochastic processes with long-range cross-correlations
,”
Eur. Phys. J. B
56
,
47
(
2007
).
59.
See https://finance.yahoo.com/ for downloading historical data of NYSE companies.
60.
L.
Faes
,
M.
Gómez-Extremera
,
R.
Pernice
,
P.
Carpena
,
G.
Nollo
,
A.
Porta
, and
P.
Bernaola-Galván
, “
Comparison of methods for the assessment of nonlinearity in short-term heart rate variability under different physiopathological states
,”
Chaos
29
,
123114
(
2019
).
You do not currently have access to this content.