The type of transition from asynchronous behavior to the generalized synchronization regime in mutually coupled chaotic oscillators has been studied. To separate the epochs of the synchronous and asynchronous motion in time series of mutually coupled chaotic oscillators, a method based on the local Lyapunov exponent calculation has been proposed. The efficiency of the method has been testified using the examples of unidirectionally coupled dynamical systems for which the type of transition is well known. The transition to generalized synchronization regime in mutually coupled systems has been shown to be an on–off intermittency as well as in the case of the unidirectional coupling.

1.
L. D.
Landau
, “
On the problem of turbulence
,”
Dokl. Akad. Nauk. SSSR
44
,
339
342
(
1944
).
2.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformation
,”
J. Stat. Phys.
19
,
25
(
1978
).
3.
M. J.
Feigenbaum
, “
The universal metric properties of nonlinear transformations
,”
J. Stat. Phys.
21
,
669
706
(
1979
).
4.
Y.
Pomeau
and
P.
Manneville
, “
Inetrmittent transition to turbulence in dissipative dynamical systems
,”
Commun. Math. Phys.
74
,
189
(
1980
).
5.
P.
Manneville
and
Y.
Pomeau
, “
Different ways to turbulence in dissipative dynamical systems
,”
Physica D
1
,
167
241
(
1980
).
6.
B.
Hu
and
J.
Rudnick
, “
Exact solutions to the Feigenbaum renormalization-group equations for intermittency
,”
Phys. Rev. Lett.
48
,
1645
1648
(
1982
).
7.
B.
Hu
and
J.
Rudnick
, “
Differential-equation approach to functional equations: Exact solutions for intermittency
,”
Phys. Rev. A
34
,
2453
2457
(
1986
).
8.
H.
Fujisaka
and
T.
Yamada
, “
Stability theory of synchronized motion in coupled-oscillator system
,”
Prog. Theor. Phys.
69
,
32
(
1983
).
9.
P.
Ashwin
,
I.
Buescu
, and
I.
Stewart
, “
From attractor to chaotic saddle: Tale of transverse instability
,”
Nonlinearity
9
,
703
737
(
1994
).
10.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
From phase to lag synchronization in coupled chaotic oscillators
,”
Phys. Rev. Lett.
78
,
4193
4196
(
1997
).
11.
S.
Boccaletti
and
D. L.
Valladares
, “
Characterization of intermittent lag synchronization
,”
Phys. Rev. E
62
,
7497
7500
(
2000
).
12.
M.
Zhan
,
G. W.
Wei
, and
C.-H.
Lai
, “
Transition from intermittency to periodicity in lag synchronizarion in coupled Rössler oscillators
,”
Phys. Rev. E
65
,
036202
(
2002
).
13.
A. S.
Pikovsky
,
M.
Zaks
,
M. G.
Rosenblum
,
G. V.
Osipov
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators in terms of periodic orbits
,”
Chaos
7
,
680
687
(
1997
).
14.
K. J.
Lee
,
Y.
Kwak
, and
T. K.
Lim
, “
Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators
,”
Phys. Rev. Lett.
81
,
321
324
(
1998
).
15.
S.
Boccaletti
,
E.
Allaria
,
R.
Meucci
, and
F. T.
Arecchi
, “
Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems
,”
Phys. Rev. Lett.
89
,
194101
(
2002
).
16.
E.
Rosa
,
E.
Ott
, and
M. H.
Hess
, “
Transition to phase synchronization of chaos
,”
Phys. Rev. Lett.
80
,
1642
1645
(
1998
).
17.
A. S.
Pikovsky
,
G. V.
Osipov
,
M. G.
Rosenblum
,
M.
Zaks
, and
J.
Kurths
, “
Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization
,”
Phys. Rev. Lett.
79
,
47
50
(
1997
).
18.
A. E.
Hramov
,
A. A.
Koronovskii
,
M. K.
Kurovskaya
, and
S.
Boccaletti
, “
Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization
,”
Phys. Rev. Lett.
97
,
114101
(
2006
).
19.
M. O.
Zhuravlev
,
A. A.
Koronovskii
,
O. I.
Moskalenko
,
A. A.
Ovchinnikov
, and
A. E.
Hramov
, “
Ring intermittency near the boundary of the synchronous time scales of chaotic oscillators
,”
Phys. Rev. E
83
,
027201
(
2011
).
20.
A. E.
Hramov
and
A. A.
Koronovskii
, “
Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators
,”
Europhys. Lett.
70
,
169
175
(
2005
).
21.
N. F.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
H. D.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
994
(
1995
).
22.
N. F.
Rulkov
, “
Images of synchronized chaos: Experiments with circuits
,”
Chaos
6
,
262
279
(
1996
).
23.
H. D.
Abarbanel
,
N. F.
Rulkov
, and
M. M.
Sushchik
, “
Generalized synchronization of chaos: The auxiliary system approach
,”
Phys. Rev. E
53
,
4528
4535
(
1996
).
24.
K.
Pyragas
, “
Weak and strong synchronization of chaos
,”
Phys. Rev. E
54
,
R4508
R4511
(
1996
).
25.
A. A.
Koronovskii
,
O. I.
Moskalenko
, and
A. E.
Hramov
, “
Nearest neighbors, phase tubes, and generalized synchronization
,”
Phys. Rev. E
84
,
037201
(
2011
).
26.
K.
Pyragas
, “
Properties of generalized synchronization of chaos
,”
Nonlinear Anal.: Modell. Control
3
,
101
129
(
1998
).
27.
Z.
Zheng
,
X.
Wang
, and
M. C.
Cross
, “
Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators
,”
Phys. Rev. E
65
,
056211
(
2002
).
28.
S.
Guan
,
X.
Wang
,
X.
Gong
,
K.
Li
, and
C.-H.
Lai
, “
The development of generalized synchronization on complex networks
,”
Chaos
19
,
013130
(
2009
).
29.
Y.-C.
Hung
,
Y.-T.
Huang
,
M.-C.
Ho
, and
C.-K.
Hu
, “
Paths to globally generalized synchronization in scale-free networks
,”
Phys. Rev. E
77
,
016202
(
2008
).
30.
A.
Hu
,
Z.
Xu
, and
L.
Guo
, “
The existence of generalized synchronization of chaotic systems in complex networks
,”
Chaos
20
,
013112
(
2010
).
31.
H.
Liu
,
J.
Chen
,
J.-A.
Lu
, and
M.
Cao
, “
Generalized synchronization in complex dynamical networks via adaptive couplings
,”
Physica A
389
,
1759
1770
(
2010
).
32.
Y.
Shang
,
M.
Chen
, and
J.
Kurths
, “
Generalized synchronization of complex networks
,”
Phys. Rev. E
80
,
027201
(
2009
).
33.
S.
Guan
,
X.
Gong
,
K.
Li
,
Z.
Liu
, and
C.-H.
Lai
, “
Characterizing generalized synchronization in complex networks
,”
New J. Phys.
12
,
073045
(
2010
).
34.
O. I.
Moskalenko
,
A. A.
Koronovskii
, and
A. E.
Hramov
, “
Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks
,”
Phys. Rev. E
87
,
064901
(
2013
).
35.
H. D. I.
Abarbanel
,
R.
Brown
, and
M. B.
Kennel
, “
Variation of Lyapunov exponents on a strange attractor
,”
J. Nonlinear Sci.
1
,
175
199
(
1991
).
36.
A.
Prasad
and
R.
Ramaswamy
, “
Characteristic distributions of finite-time Lyapunov exponents
,”
Phys. Rev. E
60
,
2761
2766
(
1999
).
37.
S.
Olmi
, “
Chimera states in coupled Kuramoto oscillators with inertia
,”
Chaos
25
,
123125
(
2015
).
38.
S.
Olmi
,
E. A.
Martens
,
S.
Thutupalli
, and
A.
Torcini
, “
Intermittent chaotic chimeras for coupled rotators
,”
Phys. Rev. E
92
,
030901
(
2015
).
39.
A. E.
Hramov
,
A. A.
Koronovskii
, and
M. K.
Kurovskaya
, “
Zero Lyapunov exponent in the vicinity of the saddle-node bifurcation point in the presence of noise
,”
Phys. Rev. E
78
,
036212
(
2008
).
40.
O. I.
Moskalenko
,
A. A.
Koronovskii
,
A. E.
Hramov
, and
S.
Boccaletti
, “
Generalized synchronization in mutually coupled oscillators and complex networks
,”
Phys. Rev. E
86
,
036216
(
2012
).
41.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. P. I. Theory. P. II. Numerical application
,”
Meccanica
15
,
9
30
(
1980
).
42.
N.
Platt
,
E. A.
Spiegel
, and
C.
Tresser
, “
On–off intermittency: A mechanism for bursting
,”
Phys. Rev. Lett.
70
,
279
282
(
1993
).
43.
A. E.
Hramov
,
A. A.
Koronovskii
, and
O. I.
Moskalenko
, “
Generalized synchronization onset
,”
Europhys. Lett.
72
,
901
907
(
2005
).
44.
A. S.
Pikovsky
and
M. I.
Rabinovich
, “
Stochastic oscillations in dissipative systems
,”
Physica D
2
,
8
24
(
1981
).
You do not currently have access to this content.