Business cycles are oscillations in the economy because of recessions and expansions. In this paper we investigate the oscillation of the gross domestic product as a result of its relations with the other main macroeconomic variables such as capital, consumption, and investment. There is a long-standing debate about chaos and non-linear dynamics in economy and even the usefulness of those concepts has been questioned. Stochastic modeling has proven to be able to simulate reality fairly well. However, a stochastic behavior implies that reality is about exogenous randomness, while a chaotic behavior means that reality is deterministic and non-linearities are endogenous. Here we compare an Ornstein–Uhlenbeck stochastic process with a Kaldor–Kalecki deterministic chaotic model to understand which one fits better real data. We show that our chaotic model is able to represent reality as well as the stochastic model taken into consideration. Furthermore, our model may reproduce an extreme event (black swans).

1.
R.
Aloui
,
M. S. B.
Aïssa
, and
D. K.
Nguyen
, “
Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure?
,”
J. Bank. Financ.
35
(
1
),
130
141
(
2011
).
2.
O.
Bajo-Rubio
,
F.
Fernandez-Rodríguez
, and
S.
Sosvilla-Rivero
, “
Chaotic behaviour in exchange-rate series: First results for the peseta–U.S. dollar case
,”
Econ. Lett.
39
(
2
),
207
211
(
1992
).
3.
U.S. Bureau of Economic Analysis (BEA)
, see https://fred.stlouisfed.org/series/A191RP1Q027SBEA for “Domestic Product (A191RP1Q027SBEA),”
Federal Reserve Bank of St. Louis (FRED)
(
2020
).
4.
S.
Benner
, Benner’s Prophecies of Future Ups and Downs in Prices (1887).
5.
J. M.
Bland
and
D. G.
Altman
, “
Statistics notes: Cronbach’s alpha
,”
BMJ
314
(
7080
),
572
(
1997
).
6.
C.
Bonatto
,
M.
Feyereisen
,
S.
Barland
,
M.
Giudici
,
C.
Masoller
,
J. R. R.
Leite
, and
J. R.
Tredicce
, “
Deterministic optical rogue waves
,”
Phys. Rev. Lett.
107
(
5
),
053901
(
2011
).
7.
W. A.
Brock
and
C. L.
Sayers
, “
Is the business cycle characterized by deterministic chaos?
,”
J. Monet. Econ.
22
(
1
),
71
90
(
1988
).
8.
A. F.
Burns
and
W. C.
Mitchell
, Measuring Business Cycles (National Bureau of Economic Research, 1946).
9.
Frontiers of Business Cycle Research, edited by T. F. Cooley (Princeton University Press, 1995).
10.
L. J.
Cronbach
, “My current thoughts on coefficient alpha and successor procedures,” CSE Report 643, Center for Research on Evaluation Standards and Student Testing (CRESST), 2004.
11.
C. A.
Del Negro
,
C. G.
Wilson
,
R. J.
Butera
,
H.
Rigatto
, and
J. C.
Smith
, “
Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network
,”
Biophys. J.
82
(
1
),
206
214
(
2002
).
12.
H.
Dezhbakhsh
and
D.
Levy
, “
Periodic properties of interpolated time series
,”
Econ. Lett.
44
(
3
),
221
228
(
1994
).
13.
M.
Ezekiel
, “
The cobweb theorem
,”
Q. J. Econ.
52
(
2
),
255
280
(
1938
).
14.
M.
Fishman
,
F. J.
Jacono
,
S.
Park
,
R.
Jamasebi
,
A.
Thungtong
,
K. A.
Loparo
, and
T. E.
Dick
, “
A method for analyzing temporal patterns of variability of a time series from Poincaré plots
,”
J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
113
(
2
),
297
306
(
2012
).
15.
N. S.
Frolov
,
V. V.
Grubov
,
V. A.
Maksimenko
,
A.
Lüttjohann
,
V. V.
Makarov
,
A. N.
Pavlov
,
E.
Sitnikova
,
A. N.
Pisarchik
,
J.
Kurths
, and
A. E.
Hramov
, “
Statistical properties and predictability of extreme epileptic events
,”
Sci. Rep.
9
(
1
),
7243
(
2019
).
16.
B. N.
Goswami
,
V.
Venugopal
,
D.
Sengupta
,
M.
Madhusoodanan
, and
P. K.
Xavier
, “
Increasing trend of extreme rain events over India in a warming environment
,”
Science
314
(
5804
),
1442
1445
(
2006
).
17.
R.
Harrod
,
Economic Dynamics
(
Palgrave Macmillan
,
1973
).
18.
R. F.
Harrod
,
Towards a Dynamic Economics: Some Recent Developments of Economic Theory and Their Application to Policy
(
Macmillan and Company
,
London
,
1948
).
19.
C.
Hillinger
and
M.
Sebold-Bender
,
Cyclical Growth in Market and Planned Economies
(
Oxford University Press
,
Oxford
,
1992
).
20.
N.
Kaldor
, “
A model of trade cycle
,”
Econ. J.
50
(
197
),
78
92
(
1940
).
21.
N.
Kaldor
, “Capital accumulation and economic growth,” in The Theory of Capital (Springer, 1961), pp. 177–222.
22.
C. K.
Karmakar
,
A. H.
Khandoker
,
J.
Gubbi
, and
M.
Palaniswami
, “
Complex correlation measure: A novel descriptor for Poincaré plot
,”
Biomed. Eng. Online
8
(
1
),
17
(
2009
).
23.
J. M.
Keynes
,
The General Theory of Employment, Interest and Money
(
Macmillan Cambridge University Press
,
1936
).
24.
A. V.
Korotayev
and
T. V.
Sergey
, “
A spectral analysis of world GDP dynamics: Kondratieff waves, Kuznets swings, Juglar and Kitchin cycles in global economic development, and the 2008-2009 economic crisis
,”
Struct. Dyn.
4
(
1
),
3
57
(
2010
).
25.
K.
Lehnertz
, “Epilepsy: Extreme events in the human brain,” in Extreme Events in Nature and Society (Springer, 2006), pp. 123–143.
26.
A. W.
Mullineux
,
The Business Cycle after Keynes
(
Wheatsheaf Books Ltd.
,
Brighton, UK
,
1984
).
27.
C.
Nicolis
,
V.
Balakrishnan
, and
G.
Nicolis
, “
Extreme events in deterministic dynamical systems
,”
Phys. Rev. Lett.
97
(
21
),
210602
(
2006
).
28.
G.
Orlando
, “
A discrete mathematical model for chaotic dynamics in economics: Kaldor’s model on business cycle
,”
Math. Comput. Simul.
125
,
83
98
(
2016
).
29.
G.
Orlando
, “Chaotic business cycles within a Kaldor-Kalecki framework,” in Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors (Springer, 2018).
30.
G.
Orlando
and
F.
Della Rossa
, “
An empirical test on Harrod’s open economy dynamics
,”
Mathematics
7
(
6
),
524
(
2019
).
31.
G.
Orlando
,
R. M.
Mininni
, and
M.
Bufalo
,
A New Approach to CIR Short-Term Rates Modelling
(
Springer
,
2018
), pp.
35
43
.
32.
G.
Orlando
,
R. M.
Mininni
, and
M.
Bufalo
, “
A new approach to forecast market interest rates through the CIR model
,”
Stud. Econ. Finance
(
2019
).
33.
G.
Orlando
,
R. M.
Mininni
, and
M.
Bufalo
, “
Forecasting interest rates through Vasicek and CIR models: A partitioning approach
,”
J. Forecast.
39
(
4
),
569
579
(
2019
).
34.
G.
Orlando
,
R. M.
Mininni
, and
M.
Bufalo
, “
Interest rates calibration with a CIR model
,”
J. Risk Finance
20
(
4
),
370
387
(
2019
).
35.
G.
Orlando
and
G.
Zimatore
, “RQA correlations on real business cycles time series,” in Proceedings of the Conference on Perspectives in Nonlinear Dynamics—2016 (Indian Academy of Sciences, 2017), Vol. 1, pp. 35–41.
36.
G.
Orlando
and
G.
Zimatore
, “
Recurrence quantification analysis of business cycles
,”
Chaos, Solitons Fractals
110
,
82
94
(
2018
).
37.
G.
Orlando
and
G.
Zimatore
, “
Recurrence quantification analysis on a Kaldorian business cycle model
,”
Nonlinear Dyn.
100
,
785
801
(
2020
).
38.
A.
Pisarchik
,
V.
Grubov
,
V.
Maksimenko
,
A.
Lüttjohann
,
N.
Frolov
,
C.
Marqués-Pascual
,
D.
Gonzalez-Nieto
,
M.
Khramova
, and
A.
Hramov
, “
Extreme events in epileptic EEG of rodents after ischemic stroke
,”
Eur. Phys. J. Spec. Top.
227
(
7
),
921
932
(
2018
).
39.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
,
R.
Sevilla-Escoboza
,
G.
Huerta-Cuellar
, and
M.
Taki
, “
Rogue waves in a multistable system
,”
Phys. Rev. Lett.
107
(
27
),
274101
(
2011
).
40.
L.
Rabiner
,
R.
Schafer
, and
D.
Dlugos
, Programs for Digital Signal Processing, edited by Digital Signal Processing Committee of the IEEE Acoustics, Speech and Signal Processing Society (IEEE Press, New York, 1979).
41.
J.
Robinson
, “
Harrod after twenty-one years
,”
Econ. J.
80
,
731
737
(
1970
).
42.
N.
Salvadori
,
The Theory of Economic Growth: A ’Classical’ Perspective
(
Edward Elgar
,
2003
).
43.
V.
Schechtman
,
M.
Lee
,
A.
Wilson
, and
R.
Harper
, “
Dynamics of respiratory patterning in normal infants and infants who subsequently died of the sudden infant death syndrome
,”
Pediatr. Res.
40
(
4
),
571
(
1996
).
44.
J. C.
Schouten
, RRChaos, software package for analysis of (experimental) chaotic time series, Reactor Research Foundation, 1993.
45.
J. A.
Schumpeter
,
History of Economic Analysis
(
George Allen & Unwin
,
London
,
1954
).
46.
R. M.
Solow
, “
A contribution to the theory of economic growth
,”
Q. J. Econ.
70
(
1
),
65
94
(
1956
).
47.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 (Springer-Verlag, Berlin, 1981), pp. 366–381.
48.
N. N.
Taleb
,
The Black Swan: The Impact of the Highly Improbable
(
Random House
,
2007
), Vol. 2.
49.
M. P.
Tulppo
,
T.
Makikallio
,
T.
Takala
,
T.
Seppanen
, and
H. V.
Huikuri
, “
Quantitative beat-to-beat analysis of heart rate dynamics during exercise
,”
Am. J. Physiol.-Heart Circulatory Physiol.
271
(
1
),
H244
H252
(
1996
).
50.
L.
Valdivieso
,
W.
Schoutens
, and
F.
Tuerlinckx
, “
Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type
,”
Stat. Inference Stochastic Processes
12
(
1
),
1
19
(
2009
).
51.
C. J.
Weinstein
,
Programs for Digital Signal Processing
(
IEEE
,
1979
).
52.
V.
Zarnowitz
, Business Cycles: Theory, History, Indicators, and Forecasting, National Bureau of Economic Research Studies in Business Cycles Vol. 27 (The University of Chicago Press, Chicago, 1992).
53.
W.
Semmler
, in
Financial Dynamics and Business Cycles: New Perspectives
(
Routledge
,
2019
).
You do not currently have access to this content.